Skip to main content

Part of the book series: Forestry Sciences ((FOSC,volume 9))

Abstract

In most North American forest soils, nitrogen, in a form readily assimilable by plants, is not in sufficient supply to support best tree growth. Forest managers usually respond to this fact by accepting less than maximum productivity from their lands. Some apply synthetic fertilizers. But neither of these actions solves the critical problem of maintaining forest ecosystem productivity at a high level of the long term. New technology obviously is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Funk DT, Schlesinger RC, Ponder F Jr.: Autumn-olive as a nurse crop for black walnut. Botanical Gazette Supplement 140: S110–114. 1979.

    Article  Google Scholar 

  2. Fessenden RJ: Use of actinorhizal plants for land reclamation and amenity planting in the U.S.A. and Canada. In: Symbiotic nitrogen fixation in the management of temperate forests Gordon JC, Wheeler CT, Perry DA (eds). Oregon State University, 1979, p 69–83.

    Google Scholar 

  3. Rehfuess KE: Underplanting of pines with legumes in Germany. In: Symbiotic nitrogen fixation in the management of temperate forests Gordon JC, Wheeler CT, Perry DA (eds). Oregon State University, 1979, p 374–387.

    Google Scholar 

  4. Baker D, Torrey JG: The isolation and cultivation of actinomycetous noot nodule endophytes. In: Symbiotic nitrogen fixation in the management of temperate forests Gordon JC, Wheeler CT, Perry DA (eds). Oregon State University, 1979, p 38–56.

    Google Scholar 

  5. Callaham D, Del Tredeci P, Torrey JG: Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199: 899–902, 1978.

    Article  PubMed  CAS  Google Scholar 

  6. LaLonde M: Confirmation of the infectivity of a free-living actinomycete isolated from Comptonia peregrina root nodules by immunological and ultrastructural studies. Canadian Journal of Botany 56: 2621–2635, 1978.

    Article  Google Scholar 

  7. Berry T, Torrey JG: Isolation and characterization in vivo and in vitro of an actinomycetous endophyte from Alnus rubra Bong. In: Symbiotic nitrogen fixation in the management of temperate forests Gordon JC, Wheeler CT, Perry DA (eds). Oregon State University, 1979, p 69–83.

    Google Scholar 

  8. LaLonde M, Calvert HE, Pine S: Isolation and use of Frankia strains in actinorhizae formation. In: Proceedings 4th Symposium on Nitrogen Fixation Canberra, Australia, p 296–299, 1980.

    Google Scholar 

  9. Stettier RF: Biological aspects of red alder pertinent to potential breeding pograms. In: Utilization andmanagement of alder Briggs DG, DeBell DS, Atkinson WA (eds). USDA Forest Service General Technical Report PNW-70, 1978, p 209–222.

    Google Scholar 

  10. Hall RB, Maynard CA: Considerations in the genetic improvement of alder. In: Symbiotic nitrogen fixation in the management of temperate forests Gordon JC, Wheeler CT, Perry DA (eds). Oregon State University, 1979, p 322–344.

    Google Scholar 

  11. DeBell DS, Harrington CA: Mini-monograph on Alnus rubra In: Document presented to the FAO Technical Consultation of Fast Growing Plantations; Broadleaved Trees for Mediterranean and Temperate Zones Vol. 1. Invited Papers. Lisbon, Portugal, 1979, p 169–186.

    Google Scholar 

  12. Kellison RC, White G: Blak alder performance in the Southeast. In: Symbiotic nitrogen fixation in the management of temperate forests Gordon JC, Wheeler CT, Perry DA (eds). Oregon State University, 1979, p 345–355.

    Google Scholar 

  13. Hansen EA, Dawson JO: Effects of Alnus glutinosa on hybrid Populus height growth in a short rotation, intensively cultured plantation. Forest Science 28: 49–59.

    Google Scholar 

  14. Van Cleve K, Viereck LA, Schlentner RL: Accumulation of nitrogen in alder (Alnus) ecosystems near Fairbanks, Alaska. Arctic and Alpine Research 3: 101–114, 1971.

    Article  Google Scholar 

  15. Binkley D: Nitrogen fixation and net primary production in a young Sitka alder ecosystem. Canadian Journal of Botany 60: 281–284, 1982.

    Article  CAS  Google Scholar 

  16. Newton M, El Hassan BZ, Zavitkovski J : Role of red alder in western Oregon forest succession. In: Biology of alder Trappe JM, Franklin JF, Tarrant RF, Hansen GM (eds). Northwest Science Association Fortieth Annual Meeting Symposium Proceedings, 1968, p 73–84.

    Google Scholar 

  17. Zavitkovski J, Newton M: Effect of organic matter and combined nitrogen on nodulation and nitrogen fixation in red alder. In: Biology of alder Trappe JM, Franklin JF, Tarrant RF, Hansen GM (eds). Northwest Scientific Association Fortieth Annual Meeting Symposium Proceedings, 1968, p 209–223.

    Google Scholar 

  18. Cole DW, Gessel SP, Turner J: Comparative mineral cycling in red alder and Douglas-fir. In: Utilization andmanagement of alder Briggs DG, DeBell DS, Atkinson WA (eds). USDA Forest Service General Technical Report PNW-70, 1978, p 327–336.

    Google Scholar 

  19. Lucken JO: Biomass and nitrogen accretion in red alder communities along the Hoh River, Olympic National Park M.S. dissertation. Western Washington University, 1979.

    Google Scholar 

  20. Gessel SP, Turner J: Litter production by red alder in western Washington. Forest Science 20: 325–330, 1974.

    CAS  Google Scholar 

  21. Bormann BT, DeBell DS: Nitrogen content and other soil properties related to age of red alder stands. Soil Science Society of America Journal 45: 428–432, 1981.

    Article  CAS  Google Scholar 

  22. Daly GT: Nitrogen fixation by nodulated Alnus rugosa. Canadian Journal of Botany 44: 1607–1621, 1966.

    Article  CAS  Google Scholar 

  23. Voight GK, Steucek GL: Nitrogen distribution and accretion in an alder ecosystem. Soil Science Society of America Proceedings 33: 947–949, 1969.

    Google Scholar 

  24. Delwiche CC, Zinke PJ, Johnson CM: Nitrogen fixation by Ceanothus. Plant Physiology 40: 1045–1047, 1965.

    Article  PubMed  CAS  Google Scholar 

  25. Youngberg CT, Wollum AG: II. Nitrogen accretion in developing Ceanothus velutinus stands. Soil Science Society of America Journal 40: 109–112, 1976.

    Article  CAS  Google Scholar 

  26. Youngberg CT, Wollum AG, Scott W: Ceanothus in Douglas-fir clearcuts: nitrogen accretion and impact on regeneration. In: Symbiotic nitrogen fixation in the management of temperate forests Gorden JC, Wheeler CT, Perry DA (eds). Oregon State University, 1979, p 224–233.

    Google Scholar 

  27. Cromack K, Delwiche CC, McNabb DH: Prospects and problems of nitrogen management using symbiotic nitrogen fixers. In: Symbiotic nitrogen fixation in the management of temperate forests Gordon JC, Wheeler CT, Perry DA (eds). Oregon State University, 1979, p 210–223.

    Google Scholar 

  28. McNabb DH, Geist JM, Youngberg CT: Nitrogen fixation by Ceanothus velutinus in northern Oregon. In: Symbiotic nitrogen fixation in the management of temperate forests Gordon JC, Wheeler CT, Perry DA (eds). Oregon State University, 1979, p 481–482.

    Google Scholar 

  29. Binkley D, Cromack K, Fredriksen RL: Nitrogen accretion and availability in snowbrush ecosystems. Forest Science 28: 720–724, 1982.

    Google Scholar 

  30. Poth M: Biological dinitrogen fixation in chapparal. In: Proceedings of the symposium on dynamics and management of Mediterranean-type ecosystems, June 22–26, San Diego, California. Conrad CE, Oechel WC (eds). General Technical Report PSW-58, Forest Service, U.S. Department of Agriculture. Berkeley, California, 1982, p 285–290.

    Google Scholar 

  31. Benson DR: Root nodules of Myrica pensylvanica (bayberry): structure, ultrastructure, and preparation of nitrogen-fixing homogenates Ph.D. dissertation. Rutgers University, 1978.

    Google Scholar 

  32. Jenny, M: The soil resource. Springer-Verlag New York, Inc. 1980.

    Google Scholar 

  33. Ike AF, Stone EL: Soil nitrogen accumulation under black locust. Soil Science Society of America Proceedings 22: 346–349, 1958.

    Article  CAS  Google Scholar 

  34. Finn RF: Foliar nitrogen and growth of certain mixed and pure forest plantings. Journal of Forestry 51: 31–33, 1953.

    CAS  Google Scholar 

  35. Plass WT: Growth and survival of hardwoods and pine interplanted with European alder. USDA Forest Service Research Paper NE-376. 1977.

    Google Scholar 

  36. Carmean WH, Clark FB, Williams RD, Hanna PR: Hardwoods planted in old fields favored by prior tree cover. USDA Forest Service Research Paper NC-134. 1976.

    Google Scholar 

  37. Wallenberg WG: Effect of Ceanothus brush on western yellow pine plantations in the Northern Rocky Mountains. Journal of Agricultural Research 41: 601–612, 1930.

    Google Scholar 

  38. Maguire WP: Radiation, surface temperature and seedling survival. Forest Science 1: 277–284, 1955.

    Google Scholar 

  39. Jorgensen JR: Use of legumes in Southeastern forestry research. In: Proceedings first biennial Southern silvicultural research conference Atlanta, GA. USDA-FS General Technical Report SO-34, 1980, p 205–211.

    Google Scholar 

  40. Haines SG, Haines LH, White G: Leguminous plants increase sycamore growth in northern Alabama. Soil Science Society of America Journal 42: 130–132, 1978.

    Article  CAS  Google Scholar 

  41. DeBell DS, Radwan MA: Growth and nitrogen relations of coppiced black cottonwood and red alder in pure and mixed plantings. Botanical Gazette Supplement 140: S97–S101, 1979.

    Article  Google Scholar 

  42. Tarrant RF: Stand development and soil fertility in a Douglas-fir red alder plantation. Forest Science 1: 238–246, 1961.

    Google Scholar 

  43. Miller RE, Murray MD: The effects of red alder on growth of Douglas-fir. In: Utilization and management of Alder Briggs DG, DeBell DS, Atkinson WA (eds). USDA Forest Service General Technical Report PNW-10, 1978, p 283–306.

    Google Scholar 

  44. Tarrant RF, Miller RE: Accumulation of organic matter and soil nitrogen beneath a plantation of red alder and Douglas-fir. Soil Service Society of America Proceedings 27: 231–234, 1963.

    Article  Google Scholar 

  45. Franklin JF, Dyrness CT, Moore DG, Tarrant RF: Chemical soil properties under coastal Oregon stands of alders and conifers. In: Biology of Alder Trappe JM, Franklin JF, Tarrant RF, Hansen GM (eds). Northwest Scientific Association Fortieth Annual Meeting Symposium Proceedings, 1968, p 157–172.

    Google Scholar 

  46. Binkley D: Ecosystem production in Douglas-fir plantations: interaction of red alder and site fertility. Forest Ecology and Management In press.

    Google Scholar 

  47. Bollen WB, Lu KC, Chen CS, Tarrant RF: Influence of red alder on fertility of a forest soil: microbial and chemical effects. Oregon State University Forest Research Laboratory Research Bulletin 12, 1967.

    Google Scholar 

  48. DeBell DS: Future potential for use of symbiotic nitrogen fixation in forest management. In: Symbiotic nitrogen fixation in the management of temperate forests Gordon JC, Wheeler CT, Perry DA (eds). Oregon State University, 1979, p 451–466.

    Google Scholar 

  49. Dawson JO, Knowlton S, Sunn SH: Juglone inhibition of Frankia growth in vitro. Plant Physiology Supplement 67: 44 Abstract, 1981.

    Google Scholar 

  50. Thibault JR: In vitro allelopathic inhibition of nitrification by balsam poplar and balsam fir. American Journal of Botany 69: 676–679, 1982.

    Article  Google Scholar 

  51. Haines SG, DeBell DS: Use of nitrogen-fixing plants to improve and maintain productivity of forest soils. In: Impact of intensive harvesting on forest nutrient cycling. State University of New York (Syracuse), 1979, p 279–303.

    Google Scholar 

  52. Gordon JC, Dawson JO: Potential uses of nitrogen-fixing trees and shrubs in commercial forestry. Botanical Gazette Supplement 140: S88–S90, 1979.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff/Dr W. Junk Publishers, The Hague/Boston/London

About this chapter

Cite this chapter

Tarrant, R.F. (1983). Nitrogen fixation in North American forestry: research and application. In: Gordon, J.C., Wheeler, C.T. (eds) Biological nitrogen fixation in forest ecosystems: foundations and applications. Forestry Sciences, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6878-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6878-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6880-6

  • Online ISBN: 978-94-009-6878-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics