Skip to main content

A Comparison of Flooding Models for Air-Water and Steam-Water Flow

  • Chapter
Book cover Advances in Two-Phase Flow and Heat Transfer

Part of the book series: NATO ASI Series ((NSSE,volume 64))

Abstract

A number of models have been proposed over the years for flooding, or countercurrent flow limitation (CCFL), for gas-liquid flow. These may be roughly classified as surface wave stability theories, static equilibrium theories, envelope or limiting operating condition theories, and semi-empirical correlations. The scatter of the data is rather large, partly because of the different definitions of flooding which have been employed, and partly because of the strong influence of the entrance and exit conditions. Some progress has been made recently in distinguishing between various critical conditions and locations for flooding; these effects tend to distinguish steam-water flooding from air-water flooding. The various theories are reviewed briefly and comparisons made with representative data. Directions for future research are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sherwood, T. K., Shipley, G. H., and Holloway, F. A. L. “Flooding velocities in packed columns.” Ind. Eng. Chem, 30 (1938) 765–769.

    Article  CAS  Google Scholar 

  2. Block, J. A. and Schrock, V. E. “Emergency cooling water delivery to the core inlet of PWR’s during LOCA.” ASME Symp. On Thermal and Hydraulic Aspects of Nuclear Reactor Safety 1 (1977) 109–132.

    Google Scholar 

  3. Lahey, R. T. “The status of boiling water nuclear reactor safety technology.” ASME Symp. on Thermal and Hydraulic Aspects of Nuclear Reactor Safety 1 (1977) 151–171.

    CAS  Google Scholar 

  4. Imura, H., Kusuda, H., and Funatsu, S. “Flooding velocity in a countercurrent annular two-phase flow.” Chem. Eng. Sci. 32 (1977) 79–87.

    Article  CAS  Google Scholar 

  5. Chung, K. S. “Flooding. phenomena in counter-current two-phase flow systems.” Ph.D. Thesis, University of California, Berkeley (1978).

    Google Scholar 

  6. Cetinbudaklar, A. G. and Jameson, G. J. “The mechanism of flooding in vertical counter-current two-phase flow.” Chem. Eng. Sci. 24 (1969) 1669–1680.

    Article  CAS  Google Scholar 

  7. Zvirin, Y., Duffey, R. B., and Sun, K. H. “On the derivation of a countercurrent flooding theory.” Symp. on Fluid Flow and Heat Transfer over Rod or Tube Bundles, ASME, New York (1979) 111–119.

    Google Scholar 

  8. Wallis, G. B. “One-dimensional two-phase flow.” Chap. 11, McGraw Hill, New York (1969).

    Google Scholar 

  9. Bharathan, D., Wallis, G. B. and Richter, H. J. “Air-water countercurrent annular flow.” EPRI NP-1165 (1979).

    Google Scholar 

  10. Dobran, F. “Condensation heat transfer and flooding in a countercurrent subcooled liquid and saturated vapor flow.” Symp on Thermal-Hydraulics in Nuclear Power Technology (1981) 9–20.

    Google Scholar 

  11. Shearer, C. J. and Davidson, J. F. “The investigation of a standing wave due to gas blowing upwards over a liquid film; its relation to flooding in wetted-wall columns.” J. Fluid Mech. (1965) 321–336.

    Google Scholar 

  12. Wallis, G. B. amd Kuo, J. T. “The behavior of gas-liquid interfaces in vertical tubes.” Int. J. Multiphase Flow 2 (1976) 521–536.

    Article  Google Scholar 

  13. Richter, H. J. “Flooding in tubes and annuli.” Int. J. Multiphase Flow 7 (1981) 647–658.

    Article  CAS  Google Scholar 

  14. Tien, C. L. and Liu, C. P. “Survey on vertical two-phase counter current flooding.” EPRI NP-984 (1979).

    Google Scholar 

  15. Sun, K. H. “Flooding correlations for BWR bundle upper tieplates and bottom side-entry orifices.” Second Multiphase Flow and Heat Transfer Symp., Miami Beach, FL (1979).

    Google Scholar 

  16. Hawley, D. L. and Wallis, G. B. “Experimental study of liquid film fraction and pressure drop characteristics in vertical countercurrent annular flow.” EPRI NP-2280 (1982).

    Google Scholar 

  17. Lee, S. C. and Bankoff, S. G. “Steam-subcooled water countercurrent flow in an inclined channel.” Topical Report to Nuclear Regulatory Commission (1982), to be published.

    Google Scholar 

  18. Grolmes, M. A., Lambert, G. A., and Fauske, H. K. “Flooding in vertical tubes.” A.I.Ch.E. Symp. On Multiphase Flow Systems (1974).

    Google Scholar 

  19. Wallis, G. B. “The influence of liquid viscosity on flooding in a vertical tube.” G. E. Report GL132 (1962).

    Google Scholar 

  20. Brauer, H. “Flow and heat transfer at falling liquid films.” VDI - Forschungsheft 457 22 (1956).

    Google Scholar 

  21. Belkin, H. H., Macleod, A. A., Monrad, C. C., and Rothfus, R. R. “Turbulent liquid flow down vertical walls.” A.I.Ch.E. J. 5 (1959) 245–248.

    CAS  Google Scholar 

  22. Feind, F. “Falling liquid films with countercurrent air flow in vertical tubes.” VDI - Forschungsheft 481 26 (1960).

    Google Scholar 

  23. Hewitt, G. F. and Wallis, G. B. “Flooding and associated phenomena in falling film flow in a vertical tube.” AERE - R4022 (1963).

    Google Scholar 

  24. Bankoff, S. G., Tankin, R. S., Yuen, M. C., and Hsieh, C. L. “Countercurrent flow of air/water and steam/water through a horizontal perforated plate.” Int. J. Heat and Mass Transfer 24 (1981) 1381–1395.

    Article  CAS  Google Scholar 

  25. Hewitt, G. F. “Influence of end conditions, tube inclination and physical properties on flooding in gas-liquid flows.” Harwell Report HTFS - RS 222 (1977).

    Google Scholar 

  26. Mishima, K. and Ishii, M. “Theoretical prediction of onset of horizontal slug flow.” Trans. ASME, J. of Fluid Engineering 102 (1980) 441–445.

    Article  Google Scholar 

  27. Gardner, G. C. “Onset of slugging in horizontal ducts.” Int. J. Multiphase Flow 5 (1979) 201–209.

    Article  Google Scholar 

  28. Wallis, G. B. and Dobson, J. E. “The onset of slugging in horizontal stratified air-water flow.” Int. J. Multiphase Flow 1 (1973) 173–193.

    Article  Google Scholar 

  29. Kordyban, E. S. and Ranov, T. “Mechanism of slug formation in horizontal two-phase flow.” Trans. ASME, J. of Basic Engineering 92 (1970) 857–864.

    Article  Google Scholar 

  30. Taitel, Y. and Dukler, A. E. “A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow.” A.I.Ch.E. J. 22 (1976) 47–55.

    CAS  Google Scholar 

  31. Tien, C. L. “A simple analytical model for counter-current flow limiting phenomena with condensation.” Letters in Heat and Mass Transfer 4 (1977) 231–237.

    Article  CAS  Google Scholar 

  32. Wallis, G. B., deSieyes, D. C., Rosselli, R. J., and Lacombe, J. “Countercurrent annular flow regimes for steam and subcooled water in a vertical tube” EPRI NP - 1336 (1980).

    Google Scholar 

  33. Nicklin, D. J. and Davidson, J. F. “The onset of instability in two-phase slug flow.” Proceedings of the Symposium on Two-Phase Fluid Flow, Inst. Mech. Engrs. (1962) 29.

    Google Scholar 

  34. Hewitt, G. F., Lacey, P. M. C., and Nicholls, B. “Transitions in film flow in a vertical tube.” Symp. on Two-Phase Flow University of Exeter, England (1965) 401–403.

    Google Scholar 

  35. Jeffreys, H. “On the formation of water waves by wind.” Proc. Roy. Soc. A. 110 (1926) 241–247.

    Article  Google Scholar 

  36. Wallis, G. B. and Makkenchery, S. “The hanging film phenomenon in vertical annular two-phase flow.” ASME Trans. J. of Fluid Engineering 96 (1974) 297–298.

    Article  Google Scholar 

  37. Collier, R. P., Dworak, J. A., Flanigan, L. J., Liu, J. S. K. and Segev, A. “Steam-water mixing and system hydrodynamics program.” NUREG/CR-1625 (1979).

    Google Scholar 

  38. Stainthorp, E. P. and Batt, R. S. W. “The effect of cocurrent and counter-current air flow on the wave properties of falling liquid films.” Trans. Inst. Chem. Engr. 45 (1967) T372–T382.

    CAS  Google Scholar 

  39. Kordyban, E. “Experimental study of aerodynamic pressure at the wave surface in two-phase flow.” Symp. on Basic Mechanisms in Two-Phase Flow and Heat Transfer, ASME (1980) 19–25.

    Google Scholar 

  40. Clift, R., Pritchard, C. L., and Nedderman, R. M. “The effect of viscosity on the flooding conditions in wetted wall columns.” Chem. Eng. Sci. 21 (1966) 87–95.

    Article  CAS  Google Scholar 

  41. Wallis, G. B., Crowley, C. J., and Block, J. “ECC bypass studies.” A.I.Ch.E. Syrup. on Light Water Reactor Safety, Boston, MA (1975).

    Google Scholar 

  42. Wallis, G. B., “Flooding velocities for air and water in vertical tubes.” UKAEA Report AEEW - R123 (1961).

    Google Scholar 

  43. Pushkina, O. L. and Sorokin, Y. L. “Breakdown of liquid film motion in vertical tubes.” Heat Transfer - Soviet Research 1 (1969) 56–64.

    Google Scholar 

  44. Dukler, A. E. and Smith, L. “Two phase interactions in countercurrent flow: studies of the flooding mechanism.” NUREG/CR-0617 (1979).

    Google Scholar 

  45. Kamei, S., Oishi, J., and Okase, T. “Flooding in a wetted wall tower.” Chem. Eng. (Japan) 18 (1954) 364–368.

    CAS  Google Scholar 

  46. Tobilevich, N. Y., Sagan, I. I., and Porzhezihskii, Y. G. “The downward motion of a liquid film in vertical tubes in an air-vapor counter flow.” J. Eng. Phys. 15 (1968) 1071–1076.

    Article  Google Scholar 

  47. Diehl, J. C. and Koppany, C. R. “Flooding velocity correlation for gas-liquid counter flow in vertical tubes.” Chem. Eng. Prog. Symp. Series 65 (1969) 77–83.

    Google Scholar 

  48. Alekseev, V. P., Poberezkin, A. E., and Germsimov, P. A. “Determination of flooding rates in regular packings” Heat Transfer - Soviet Research 4 (1972) 159–163.

    CAS  Google Scholar 

  49. Tien, C. L., Chung, K. S., and Liu, C. P. “Flooding in two-phase countercurrent flows.” EPRI NP-1283 (1979).

    Google Scholar 

  50. Suzuki, S. and Ueda, T. “Behavior of liquid films and flooding in countercurrent two-phase flows - Part 1, Flow in circular tubes.” Int. J. Multiphase Flow 3 (1977) 517–532.

    Article  CAS  Google Scholar 

  51. Block, J. A. and Crowley, C. J. “Effect of steam upflow and superheated walls on ECC delivery in a simulated multiloop PWR geometry.” Creare TN - 210 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Bankoff, S.G., Lee, S.C. (1983). A Comparison of Flooding Models for Air-Water and Steam-Water Flow. In: Kakaç, S., Ishii, M. (eds) Advances in Two-Phase Flow and Heat Transfer. NATO ASI Series, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6848-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6848-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6850-9

  • Online ISBN: 978-94-009-6848-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics