Skip to main content

Genotypic differences in the mineral metabolism of plants adapted to extreme habitats

  • Chapter
Genetic Aspects of Plant Nutrition

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 8))

Summary

Halophytes, metallophytes, serpentine plants, calcicoles, and calcifuges are adapted to soil conditions which are deleterious for other plants. Some mechanisms responsible for these adaptations are described. The respective changes in the genome for these alterations of the mineral metabolism are probably not too far-reaching, because already intraspecific differentiation may lead to resistant ecotypes. On the other hand it seems likely that some families or species are favoured in occupying extreme soil types in consequence of their basic physiological features (i.e. Chenopodiaceae, Poaceae in saline habitats, Brassicaceae, Caryophyllaceae on heavy metal soils).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert R 1982 Halophyten. In Pflanzenökologie und Mineralstoffwechsel. Ed H Kinzel. Verlag Eugen Ulmer, Stuttgart.

    Google Scholar 

  2. Albert R and Kinzel H 1973 Unterscheidung von Physioltypen bei Halophyten des Neusiedlerseegebietes (Österreich). Z. Pflanzenphysiol. 70, 138–157.

    CAS  Google Scholar 

  3. Albert R, Königshofer H and Kinzel H 1980 Zur Osmoregulation einer physiologisch calciophoben und ökologish calcicolen Pflanze (Dianthus lumnitzeri WIESB.). Flora 169, 9–14.

    Google Scholar 

  4. Albert R and Popp M 1977 Chemical composition of halophytes from the Neusiedler lake region in Austria. Oecologia (Berl). 27, 157–170.

    Article  Google Scholar 

  5. Antonovics J, Bradshaw A D and Turner R G 1971 Heavy metal tolerance in plants. Adv. Ecol. Res. 7, 1–85.

    Article  Google Scholar 

  6. Baker A J M 1978 Ecophysiological aspects of zinc tolerance in Silene mnaritime With. New Phytol. 80, 635–642.

    Article  CAS  Google Scholar 

  7. Beigl E 1981 Verteilung der Alkaliionen zwischen Cytoplasma und Vakuole in den Zellen höherer Pflanzen. Eine neuartige Untersuchsmethode. Phil. Diss. Universität Wien.

    Google Scholar 

  8. Cataldo D A, Gerland T R and Wildung R E 1978 Nickel in plants. Plant Physiol. 62, 563–570.

    Article  PubMed  CAS  Google Scholar 

  9. Epstein E 1972 Mineral nutrition of plants. Principles and perspectives. John Wiley and Sons, Inc. New York, London.

    Google Scholar 

  10. Epstein E and Jefferies R L 1964 The genetic basis of selective ion transport in plants. Annu. Rev. Plant Physiol. 15, 169–184.

    Article  CAS  Google Scholar 

  11. Erdei L, Stuiver B and Kuiper P J C 1980 The effect of salinity on lipid composition and on activity of Ca+2 and Mg+2 stimulated ATPases in salt-sensitive and salt-tolerant Plantago species. Physiol. Plant. 49, 315–319.

    Article  CAS  Google Scholar 

  12. Ernst W 1968 Der Einfluß der Phosphatversorgung sowie die Wirkung von ionogenem und chelatisiertum Zink auf der Zink und Phosphataufnahme einiger Schwermetallpflanzen. Physiol. Plant. 21, 323–333.

    Article  CAS  Google Scholar 

  13. Ernst W 1972 Schwermetallresistenz und Mineralstoffhaushalt. Forschungsber. Land. Nordrhein. Westfalen. 2251, 1–38.

    Google Scholar 

  14. Ernst W 1982 Schwermetallpflanzen. In Pflanzenökologie und Mineralstoffwechsel. Ed. H Kinzel. Verlag Eugen Ulmer, Stuttgart.

    Google Scholar 

  15. Flowers T J 1972 Salt tolerance in Suaede maritima L. (Dum). The effect of sodium chloride on growth, respiration, and soluble enzymes in a comparative study with Pisum. J. Exp. Bot. 23, 310–321.

    Article  CAS  Google Scholar 

  16. Flowers T J 1972 The effect of sodium chloride on enzyme activities from four halophyte species of Chenopodiaceae. Phytochem. 11, 1881–1886.

    Article  CAS  Google Scholar 

  17. Flowers T J 1975 Halophytes. In Ion transport in plant cells and tissues. D A Baker and J L Hall. pp. 309–334. North Holland Amsterdam.

    Google Scholar 

  18. Flowers T J, Troke P F and Yeo AR 1977 The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28, 89–121.

    Article  CAS  Google Scholar 

  19. Foy C D, Chaney R L and White M C 1978 The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol. 29, 511–566.

    Article  CAS  Google Scholar 

  20. Gigon A 1971 Vergleich alpiner Rasen auf Silikat und Karbonatboden. Konkurrenz- und Stickstoffformenversuche sowie standortskundliche Untersuchungen im Nardetum und im Seslerietum bei Davos. Phil. Diss. ETH Zürich. Veröff. Geobot. Institut. ETH, Stiftung Rübel.

    Google Scholar 

  21. Gorham J, Hughes L L and Wyn Jones R G 1980 Chemical composition of salt-marsh plants from Ynys-Mon (Anglesey) — the concept of physiotypes. Plant, Cell Environm. 3, 309–319.

    Article  CAS  Google Scholar 

  22. Greenway H and Osmond C B 1972 Salt response of enzymes from species differing in salt tolerance. Plant Physiol. 49, 256–259.

    Article  PubMed  CAS  Google Scholar 

  23. Gregory R P G and Bradshaw A D 1965 Heavy metal tolerance in populations of Agrostis tenuis Sibth. and other grasses. New Phytol. 64, 131–143.

    Article  CAS  Google Scholar 

  24. Hannon N J and Barber H N 1972 The mechanism of salt tolerance in naturally selected populations of grasses. Search. 3, 259–260.

    CAS  Google Scholar 

  25. Harvey D M R, Hall J L, Flowers T J and Kent B 1981 Quantitative ion localization within Suaeda maritima leaf mesophyll cells. Planta. 151, 555–560.

    Article  CAS  Google Scholar 

  26. Horak O 1971 Vergleichende Untersuchungen zum Mineralstoffwechsel der Pflanzen. Diss. Univ. Wien, Band 60. Verlag Notring, Wien.

    Google Scholar 

  27. Jefferies R L 1973 The ionic relations of seedlings of the halophyte Triglochin maritima L. In: Ion Transport by Plants. Ed. W. P. Anderson, pp 297–321. Academic Press, London, New York

    Google Scholar 

  28. Kinzel, H 1963 Zellsaft-Analysen zum pflanzlichen Calcium- und Säurestoffwechsel und zum Problem der Kalk- und Silikatpflanzen. Protoplasma. 57, 522–555.

    Article  CAS  Google Scholar 

  29. Kinzel H 1972 Biochemische Pflanzenökologie. Schriften d. Ver. z. Verbr. Naturwiss. Kenntn. in Wien. 112, 77–98.

    Google Scholar 

  30. Kinzel H 1982 Die calcicolen und calcifugen, basiphilen und acidophilen Pflanzen. In: Pflanzenökologie und Mineralstoffwechsel. Ed. H Kinzel. Verlag Eugen Ulmer, Stuttgart.

    Google Scholar 

  31. Kinzel H and Weber M 1982 Serpentine-Pflanzen. In: Pflanzenökologie und Mineralstoffwechsel. Ed. H Kinzel. Verlag Eugen Ulmer, Stuttgart.

    Google Scholar 

  32. Kuiper P J C 1968 Lipids in grape roots in relation to chloride transport. Plant Physiol. 43, 1367–1371.

    Article  PubMed  CAS  Google Scholar 

  33. Kylin A 1973 Adenosine triphosphatases stimulated by (sodium + potassium); biochemistry and possible significance for salt resistance. In: Ion transport in Plants. Ed. W P Anderson. Academic Press, London, New York.

    Google Scholar 

  34. Larson H 1967 Biochemical aspects of extreme halophilism. Adv. Microbiol. Physiol. 1, 97–132.

    Article  Google Scholar 

  35. Läuchli, A 1976 Genotypic variation in transport. In: Encyclopedia of Plant Physiology. New Series, vol. 2, part B. Eds. U Lüttge and M G Pitman. Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  36. Lee J, Reeves R D, Brooks R R and Jafffe T 1977 Isolation and identification of a citrato-complex of nickel from nickel accumulating plants. Phytochem. 16, 1503–1505.

    Article  CAS  Google Scholar 

  37. Levitt J 1980 Responses of plants to environmental Stress. Academic Press, New York, London.

    Google Scholar 

  38. Lüttge U 1975 Salt glands. In: Ion Transport in Plant Cells and Tissues. Eds. D A Baker and J L Hall. North Holland Publishing Company.

    Google Scholar 

  39. Madhok O P and Walker R B 1969 Magnesium nutrition of two species of sunflower. Plant Physiol. 44, 1016–1022.

    Article  PubMed  CAS  Google Scholar 

  40. Mathys W 1975 Enzymes of heavy-metal-resistant and non-resistant populations of Silene cucubalus and their interaction with some heavy metals in vitro and in vivo. Physiol. Plant. 33, 161–165.

    Article  CAS  Google Scholar 

  41. Mathys W 1977 The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol. Plant. 40, 130–136.

    Article  CAS  Google Scholar 

  42. Mishustina N E, Tikhaya N I and Chaplygina N S 1979 (Na+ + K+) ATPase activity in membranes isolated from shoots of the halophyte Halocnemum strobilaceum. Fiziologiya Rastenii. 26, 541–547.

    Google Scholar 

  43. Mutsch F 1981 Schwermetallanalysen an Freilandpflanzen im Hinblick auf die natürliche Spurenelementversorgung und die Schwermetallintoxikation. Phil. Diss. Universität Wien.

    Google Scholar 

  44. Osmond C B, Björkman O and Anderson D J 1980 Physiological processes in plant ecology. Towards a synthesis with Atriplex. Springer Verlag, Berlin, Heidelberg, New York. Ecological Studies 36.

    Google Scholar 

  45. Priebe A and Jäger H J 1978 Responses of amino acid enzymes from plants differing in salt tolerance to NaCl. Oecologia (Berl.) 36, 307–315.

    Article  Google Scholar 

  46. Proctor J, Johnston W R, Cottam D A and Wilson A B 1981 Field-capacity water extracts from serpentine soils. Nature, London 294, 245–246.

    Article  CAS  Google Scholar 

  47. Proctor J and Woodell S R J 1975 The ecology of serpentine soils. Adv. Ecol. Res. 9, 255–366.

    Article  Google Scholar 

  48. Rains D W and Epstein E 1967 Preferential absorption of potassium by leaf tissues of the mangrove Avicennia marina: an aspect of halophytic competence in coping with salt. Aust. J. Biol. Sci. 20, 847–857.

    CAS  Google Scholar 

  49. Rattenböck H 1978 Chemisch-physiologische Charakterisierung der Brassicaceae. Ein Beitrag zum Physiotypenkonzept. Phil. Diss. Universität Wien.

    Google Scholar 

  50. Rorison I H (ed) 1969 Ecological aspects of the mineral nutrition of plants. Blackwell Scientific Publications, Oxford, Edinburgh.

    Google Scholar 

  51. Rozema J 1978 On the ecology of some halophytes from a beach plain in the Netherlands. Ph. Th. Freie Universität, Amsterdam.

    Google Scholar 

  52. Snaydon R W and Bradshaw A D 1961 Differential response to calcium within the species Festuca ovina L. New Phytol. 60, 219–234.

    Article  CAS  Google Scholar 

  53. Wainwright S J and Woolhouse H 1977 Some physiological aspects of copper and zinc tolerance in Agrostis tenuis Sibth: Cell elongation and membrane damage. J. Exp. Bot. 28, 1029–1036.

    Article  CAS  Google Scholar 

  54. Weimberg R 1970 Enzyme levels in pea seedlings grown on highly saline media. Plant Physiol. 46, 466–470.

    Article  PubMed  CAS  Google Scholar 

  55. Yeo A R 1981 Salt tolerance in the halophyte Suaeda maritima L. Dum Intracellular compartmentation of irons. J. Exp. Bot. 32, 487–497.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. R. Sarić B. C. Loughman

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff/Dr W. Junk Publishers, The Hague/Boston/Lancaster

About this chapter

Cite this chapter

Popp, M. (1983). Genotypic differences in the mineral metabolism of plants adapted to extreme habitats. In: Sarić, M.R., Loughman, B.C. (eds) Genetic Aspects of Plant Nutrition. Developments in Plant and Soil Sciences, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6836-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6836-3_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6838-7

  • Online ISBN: 978-94-009-6836-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics