Skip to main content

The Elastic Strain Energy of Dislocation Structures in Fatigued Metals

  • Conference paper
Defects, Fracture and Fatigue
  • 229 Accesses

Abstract

The elastic strain energy is calculated for persistent slip band structures and for vein structures of dislocations in cyclically loaded metals. The evolution of dislocation structures during fatigue of metals is discussed in terms of the elastic strain energy of the structures. The ladders in persistent slip bands and the tangling dislocation dipoles in vein structures are simulated by the Oro-wan loops surrounding inclusions which consist of slip bands with a multiple shell structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eshelby, J. D., “The determination of the elastic field of an ellipsoidal inclusion, and related problems”, Proc. Roy. Soc. A241, p. 376, 1957.

    ADS  MathSciNet  Google Scholar 

  2. Tanaka, K. and Mori, T., “Note on volume integrals of the elastic field around an ellipsoidal inclusion”, J. Elasticity, Vol. 2, p. 199, 1972.

    Article  Google Scholar 

  3. Mori, T. and Tanaka, K., “Average stress in matrix and average energy of materials with misfitting inclusions”, Acta Metall., Vol. 21, p. 571, 1973.

    Article  Google Scholar 

  4. Laird, C. and Duquette, D. J., “Mechanisms of fatigue crack and nucleation”, Corrosion Fatigue, O. F. Deuereux, A. J. McEvily and R. W. Staehle, eds., NACE, Vol. 2, p. 88, 1972.

    Google Scholar 

  5. Mughrabi, H., “Microscopic mechanisms of metal fatigue”, Strength of Metals and Alloys, P. Haasen, V. Gerold and G. Kostorz, eds., Pergamon Press, Vol. 3, p. 1615, 1980.

    Google Scholar 

  6. Mura, T., Micromechanics of Defects in Solids, Martinus Nijhoff, p. 292, 1982.

    Google Scholar 

  7. Tanaka, K. and Mura, T., “A dislocation model for fatigue crack initiation”, J. Appi. Mech., Vol. 48, p. 97, 1981.

    Article  MATH  Google Scholar 

  8. Tanaka, K. and Mura, T., “A theory of fatigue crack initiation at inclusions”, Metall. Trans. A., Vol. 13, p. 117, 1982.

    Google Scholar 

  9. Tanaka, K. and Mura, T., “Micromechanical theory of fatigue crack initiation from notches”, Mech. of Materials, Vol. 1, p. 63, 1982.

    Article  Google Scholar 

  10. Mura, T., “Accumulation of elastic strain energy during cyclic loading”, Scripta Metall., June, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, The Hague

About this paper

Cite this paper

Mura, T., Shirai, H., Weertman, J.R. (1983). The Elastic Strain Energy of Dislocation Structures in Fatigued Metals. In: Sih, G.C., Provan, J.W. (eds) Defects, Fracture and Fatigue. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6821-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6821-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6823-3

  • Online ISBN: 978-94-009-6821-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics