Skip to main content

Analyses of Microstructural and Chemical Effects on Fatigue Crack Growth

  • Conference paper
Defects, Fracture and Fatigue

Abstract

Fatigue crack propagation is insensitive to micro-structure of a material in the intermediate ΔK region. But it is highly sensitive in the low ΔK near threshold region. da/dN decreases with ΔK. As ΔK decreases below a transition point, ΔKt, da/dN decreases rapidly, and a crack ceases to propagate when ΔK is below ΔKth.

A fatigue crack may propagate by the deformation or fracture mode or by a mixture of the two. Fatigue crack propagation in deformation mode is structurally insensitive if the cyclic plastic zone is several times the grain size or the size of the mean free path for dislocation movement when the crack tip deformation can be described in terms of the “average” yield strength of the material.

FCP in deformation mode is structurally sensitive, if the cyclic plastic zone is nearly the size of the grain or the mean free path of dislocation movement; and FCP in fracture mode is also structurally sensitive.

Intergranular fatigue crack growth by the fracture mode in detrimental chemical environment is structurally sensitive. The temperature and frequency effects of the crack growth in detrimental chemical environment as well as the relation between ΔKt and ΔKth are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitagawa, H., Nishitani, H. and Matsumoto, J., Proc. 3rd Int. Congr. on Fracture, Vol. 5, Paper V-444/A, Dusseldorf, Verein Deutscher Eisenhuttenleute, 1973.

    Google Scholar 

  2. Masounave, J. and Bailon, J.-P., Scr. Metall., 10, p. 165, 1976.

    Article  Google Scholar 

  3. Ritchie, R. O., J. Eng. Mater. Technol. (Trans. ASME, H), 99, p. 165, 1977.

    Google Scholar 

  4. Ritchie, R. O., Met. Sci., 11, p. 368, 1977.

    Article  Google Scholar 

  5. Ritchie, R. O., “Near-Threshold Fatigue-Crack Propagation in Steels”, Int. Metals Reviews, Nos. 5 and 6, p. 205, 1979.

    Google Scholar 

  6. Taira, S., Tanaka, K. and Hoshina, M., in Fatigue Mechanisms, ASTM STP 675, J. T. Fong, ed., p. 135, 1979.

    Google Scholar 

  7. Suzuki, H. and McEvily, A. J., Metallurgical Transactions A, 10A, No. 4, p. 475, 1979.

    Article  ADS  Google Scholar 

  8. Cooke, R. J. and Beevers, C. J., Materials Science and Engineering, 13, No. 3, p. 201, March 1974.

    Google Scholar 

  9. Benson, J. P., Metal Science, 13, p. 535, September 1979.

    Article  Google Scholar 

  10. Yoder, G. R., Cooley, L. A. and Crooker, T. W., “A Critical Analysis of Grain-Size and Yield-Strength Dependence of Near-Threshold Fatigue-Crack Growth in Steels”, Naval Research Laboratory, NRL Memorandum Report 4576, July 1981.

    Google Scholar 

  11. Wei, R. P., Int. J. Fract. Mech., 4, p. 156, 1968.

    Google Scholar 

  12. Rider, J. T. and Gallagher, J. P., J. Basic Eng., 92, p. 121, 1970.

    Article  Google Scholar 

  13. Yokobori, T., Physics of Strength and Plasticity, A. S. Argon, ed., MIT Press, Cambridge, Mass., p. 327, 1969.

    Google Scholar 

  14. James, L. A. and Schwenk, E. B., Jr., Met. Trans., 2, p. 491, 1971.

    Article  Google Scholar 

  15. Neumann, V. P., “New Experiments Concerning the Slip Processes at Propagating Fatigue Cracks - I, II”, Acta Met., 22, p. 1155, 1974.

    Article  Google Scholar 

  16. Kuo, A. S. and Liu, H. W., “An Analysis of Unzipping Model for Fatigue Crack Growth”, Scripta Met., 10, p. 723, 1976.

    Article  Google Scholar 

  17. Liu, H. W. and Kobayashi, H., “Stretch Zone Width and Striation Spacing - The Comparison of Theories and Experiments”, Scripta Met., 16, May 1980.

    Google Scholar 

  18. Lal, D. N. and Weiss, V., “An Analysis of Non-Propagating Fatigue Cracks”, Metallurgical Transactions A, 6A, p. 1623, 1975.

    Article  ADS  Google Scholar 

  19. Weertman, J., “Fatigue Crack Growth in Ductile Metals”, Mechanics of Fatigue, T. Mura, ed., ASME, AMD-47, 1981.

    Google Scholar 

  20. Liu, H. W. and Liu, D., “Near Threshold Fatigue Crack Growth Behavior”, Script. Met., May 1982.

    Google Scholar 

  21. Taira, S., Tanaka, K. and Nakai, Y., “A Model of Crack Tip Slip Band Blocked by Grain Boundary”, Mech. Res. Comm. 5 (6), p. 375, 1978.

    Article  Google Scholar 

  22. Yang, C. Y. and Liu, H. W., “The Application of Unzipping Model of Fatigue Crack Growth to a Two-Phase Steel”, Int. J. Fracture, 17, No. 2, April 1981.

    Google Scholar 

  23. Liu, H. W. and McGowan, J. J., “A Kinetic Analysis of High Temperature Fatigue Crack Growth, Scripta Met., 1981.

    Google Scholar 

  24. McGowan, J. J. and Liu, H. W., “The Role of Three-Dimensional Effects in Constant Amplitude Fatigue Crack Growth Testing”, J. of Eng. Materials and Tech., 102, p. 341, October 1980.

    Article  Google Scholar 

  25. Liu, H. W., “On the Fundamental Basis of Fracture Mechanics”, to be published in Int. J. of Engineering Fracture Mechanics.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, The Hague

About this paper

Cite this paper

Liu, H.W. (1983). Analyses of Microstructural and Chemical Effects on Fatigue Crack Growth. In: Sih, G.C., Provan, J.W. (eds) Defects, Fracture and Fatigue. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6821-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6821-9_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6823-3

  • Online ISBN: 978-94-009-6821-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics