Skip to main content

Plant Reaction to Heat Stress at Low Oxygen and High CO2-Concentration

  • Chapter
Effects of Stress on Photosynthesis

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 3))

  • 206 Accesses

Abstract

To eliminate virus from fruit trees, plants have to be maintained several weeks at temperatures between 37–44°C for heat treatment.

In particular, heat sensitive fruit species die off after a few days at such extreme condition. However, reducing photo-inhibition and photorespiration by altering O2 and CO2 levels allow plants to survive for longer periods.

Measurements of photosynthesis, respiration and water consumption of heat treated plants grown at different O2 and CO2 concentration are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassi PK, Spencer MS (1982) Effect of carbon dioxide and light on ethylene production in intact sunflower plants. Plant Physiol 69: 1222–1225.

    Article  PubMed  CAS  Google Scholar 

  2. Baumann G.(1973) Wichtige Viruskrankheiten des Kern- und Steinobstes -Erkennung und Verhütung. Berlin und Hamburg, Paul Parey.

    Google Scholar 

  3. Björkman A, Badger MR, Armond PA (1980) Response and adaptation of photosynthesis to high temperatures. In Turner NC and Kramer PK eds. Adaptation of plants to water and high temperature stress. pp 233–249. New-York: John Wiley and Sons.

    Google Scholar 

  4. Claussen W (1975) Untersuchungen über den Einfluss der Frucht auf die Netto-Photosyntheseraten und den Saccharose- und Stärkestoffwechsel der Blätter und Wurzeln von Auberginen (Solanum melongena L.).

    Google Scholar 

  5. Daunicht HJ (1970) Ein Verfahren zur exakten automatischen Photosynthese-kompensation. Ber Dt Bot Ges 83: 499.

    CAS  Google Scholar 

  6. Heath OVS (1948) Control of stomatal movement by a reduction in the normal carbon dioxide content of the air. Nature (London) 1961: 179–181

    Article  Google Scholar 

  7. Kassanis B (1980) Therapy of virus-infected plants and the active defence mechanism. Outlook on Agriculture 10: 288–292.

    Google Scholar 

  8. Mansfield TA, Davies WJ (1981) Stomata and stomatal mechanisms. In: Paleg LG and Aspinall D eds. The physiology and biochemistry of drought resistance in plants, pp 315–346. New-York, Academic Press.

    Google Scholar 

  9. Naumann G (1978) Virus diseases in fruit growing and possible ways of controlling them. Plant research and development 7: 108–118.

    Google Scholar 

  10. Raschke K (1975) Stomatal action. Ann Rev Plant Physiol 26: 309–340.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff/Dr W. Junk Publishers, The Hague

About this chapter

Cite this chapter

Lenz, F., Kornkamhaeng, P., Levin, HG. (1983). Plant Reaction to Heat Stress at Low Oxygen and High CO2-Concentration. In: Marcelle, R., Clijsters, H., van Poucke, M. (eds) Effects of Stress on Photosynthesis. Advances in Agricultural Biotechnology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6813-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6813-4_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6815-8

  • Online ISBN: 978-94-009-6813-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics