Skip to main content

Methods of Microwave Imagery for Diagnostic Applications

  • Chapter
Diagnostic Imaging in Medicine

Part of the book series: NATO ASI Series ((NSSE,volume 61))

Abstract

The spatial distribution of microwave energy transmitted from an incident field through a biosystem to a receiving antenna depends upon features of both the biosystem and the incident energy. With respect to the incident field, features such as frequency, polarization, and mode are important parameters of such a radiative transfer. With respect to the biosystem, the spatial distribution of dielectric properties and their time as well as frequency dependencies are the important parameters. Further, to the extent that the incident flux density is sufficient to heat the biosystem, power density may itself effect the spatial distribution of absorbed microwave energy. This is a consequence of two facts: first the microwave constitutive parameters of biological dielectrics are temperature dependent per se; secondly, in situ thermoregulatory mechanisms may substantially alter the spatial distribution of complex permittivity as a result of vasomotor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Von Hippel, A.R. Dielectrics and Waves (MIT Press, 1954).

    Google Scholar 

  2. Hasted, J.B. Aqueous Dielectrics (Chapmand and Hall, 1973).

    Google Scholar 

  3. Grant, E.H., Sheppard, R.J. and South, G.P. Dielectric Behavior of Biological Molecules in Solution (Clarendon Press, 1978).

    Google Scholar 

  4. Yamaura, I. “Meausrements of 1.8 - 2.7 GHz microwave attenuation in the human torso.” IEEE Trans. Microwave Theory and Techniques, MTT-25 (1977) 707-710.

    Article  Google Scholar 

  5. Burdette, E.C., Cain, F.L. and Seals, J. “In vivo probe measurement techniques for determining dielectric properties at UHF through microwave frequencies.” IEEE Trans. Microwave Theory and Techniques, MTT-28 (1980) 414-427.

    Article  CAS  Google Scholar 

  6. Rutherford, R. A., Pullan, B.R. and Isherwood, I. “Measurement of effective atomic number and electron density using an EMI scanner.” Neuroradiol., 11 (1976) 15-22.

    Article  CAS  Google Scholar 

  7. Gregg, E.C. “Radiation risks with diagnostic x-rays.” Radiology 123 (1977) 447-453.

    PubMed  CAS  Google Scholar 

  8. Born, M. and Wolf, E. Principles of Optics (Pergamon, 1966).

    Google Scholar 

  9. Deschamps, G.A. “Part II - Geometrical representation of the polarization of a plane electromagnetic wave.” Proc. IEEE, 39 (1951) 540-544.

    Google Scholar 

  10. Kennaugh, E.M. “Polarization properties of radar reflectors.” Ohio State University Antenna Laboratory, Project Report 389-12 (AD2494) (RADC, AF28(099)-90, 1952).

    Google Scholar 

  11. Sinclair, G. “The transmission and reception of elliptically polarized waves.” Proc. IEEE. 39 (1951) 535-540.

    Google Scholar 

  12. Copeland, J.R. “Radar target classification by polarization properties.” Proc. IRE, 48 (1960) 1290-1296.

    Article  Google Scholar 

  13. Huynen, R.J. Phenomenological Theory of Radar Targets (Drukkerij Bronder, 1970).

    Google Scholar 

  14. Kurokawa, K. “Power waves and the scattering matrix.” IEEE Trans. Microwave Theory and Techniques, MTT - 13 (1965) 194-202.

    Article  Google Scholar 

  15. Boerner, W.M., El-Arini, M.B., Chan, C.Y. and Mastoris, P.M. “Polarization dependence in electromagnetic inverse problems.” IEEE Trans. Antennas and Propagation, AP-29 (1981) 262-270.

    Article  Google Scholar 

  16. Jacobi, J.H. Larsen, L.E. and Hast, T.C “Water immersed microwave antennas and their application to microwave interrogation of biological targets.” IEEE Trans. MicrowaveTheory and Techniques, MTT-27 (1979) 70-78.

    Article  Google Scholar 

  17. Ruck, G.T., Burrick, D.E., Stuart, W.D. and Kirchbaum, C.K. Radar Cross Section Handbook, Vols. I and II (Plenum, 1970).

    Google Scholar 

  18. Rao, S.P., Santosh, K. and Gregg, E.C “Computer tomography with microwaves.” Radiology, 135 (1980) 769-770.

    PubMed  CAS  Google Scholar 

  19. Larsen, L.E. and Jacobi, J.H. “Microwave interrogation of dielectric targets. Part I: by scattering parameters.” Medical Physics, 5 (1978) 500-508.

    Article  PubMed  CAS  Google Scholar 

  20. Larsen, L.E. and Jacobi, J.H. “Microwave scattering parameter imagery of isolated canine kidney.” Medical Physics, 6 (1979) 394-403.

    Article  PubMed  CAS  Google Scholar 

  21. Larsen, L.E. and Jacobi, J.H. “The use of orthogonal polarization in microwave imagery of isolated canine kidney.” IEEE Trans. Nuclear Science, NS-27 (1980) 1184-1191.

    Google Scholar 

  22. Adam, S.F. Microave Theory and Applications (Prentice Hall, 1969).

    Google Scholar 

  23. Jacobi, J.H. and Larsen, L.E. “Microwave interrogation of dielectric targets. Part II: by microwave time delay spectroscopy.” Medical Physics, 5 (1978) 509-513.

    Article  PubMed  CAS  Google Scholar 

  24. Jacobi, J.H. and Larsen, L.E. “Microwave time delay spectroscopic imagery of isolated canine kidney.” Medical Physics 7 (1980) 1-7.

    Article  PubMed  CAS  Google Scholar 

  25. Bernstein, R. “Digital image processing of earth observation sensor data.” IBM J. Res. and Develop., 20 (1976) 40-57.

    Article  Google Scholar 

  26. Rifman, S.S. and McKinum, D.M. “Evaluation of digital correction techniques for ERTS images.” TRW Corporation Final Report, TRW 20634-6003-TU-00 (NASA, GSFC, 1974).

    Google Scholar 

  27. Simon, K.W. “Digital image reconstruction and resampling for geometric manipulation” Digital Image Processing fr Remote Sensing (R. Bernstein, Ed.) pp. 84-94 (IEEE Press, (1978).

    Google Scholar 

  28. Gonzales, R.C. and Wintz, P. Digital Image Processing (Addison-Wesley, 1977).

    Google Scholar 

  29. Brenner, B.M. and Rector, F.C., Jr. The Kidney. Vols. 1 and II (Saunders, 1976).

    Google Scholar 

  30. Pitts, R.F. Physiology of the Kidney and Body Fluids, 3rd Edition (Yearbook Medical Publishers, 1974).

    Google Scholar 

  31. DeWardener, H.E. “The Control of sodium excretion.” Am. J. Physiol., 235 (1978) F163-F173.

    CAS  Google Scholar 

  32. Foti, S.J., Flam, R., Aubin, J., Larsen, L.E. and Jacobi, J.H. “Water immerged phased array system for biological target interrogation”. Proc Conf Electromagnetic Dosimetric Imagery (Larsen, L.E. and Jacobi, JH. Eds.) (in press, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Larsen, L.E., Jacobi, J.H. (1983). Methods of Microwave Imagery for Diagnostic Applications. In: Reba, R.C., Goodenough, D.J., Davidson, H.F. (eds) Diagnostic Imaging in Medicine. NATO ASI Series, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6810-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6810-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6812-7

  • Online ISBN: 978-94-009-6810-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics