Skip to main content

Genetics of Seed Proteins in Wheat

  • Chapter
Book cover Seed Proteins

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 2))

Abstract

The history of cultivated wheat has been closely interlaced with the history of civilization since the early days of agriculture. With domestication, wheat has lost its inherent ability to disseminate to such an extent that its survival today depends essentially on man. However, at the same time, it has received so much care and attention worldwide that it can rightly be regarded as the most important of all food crops. Furthermore, the range of its utilization is practically as wide as the number of regions in the world. In addition to bread, which is a staple food everywhere, wheat is used — either alone or in combination with other farm products — to prepare macaroni, spaghetti, cous-cous, fric, chappati, ingera, tortillas, rolls, crackers, cookies, biscuits, cakes, doughnuts, muffins, pancakes, waffles, noodles, piecrust, icecream cones, puddings, pizza, bulgur, rolled flakes, etc. The fact that, to this day, it provides the basic nutrition for over one billion people or about 35 to 40 percent of mankind in such a wide variety, wheat is expected to remain foremost among the staple crops for man. It is therefore appropriate, if not imperative, to improve its nutritive properties which are now limited essentially by the rather low protein content particularly compared to its high caloric level and to the low nutritive value of its proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aamodt, OS and JH Torrie (1935): Studies on the inheritance and the relation between kernel texture and protein content in several spring wheat crosses. Can. J. Res. 13: 202–219.

    Google Scholar 

  2. Anfinsen, CB (1959): The Molecular Basis of Evolution. John Wiley and Sons, New York.

    Google Scholar 

  3. Appleyard, DB, J McCausland, and CW Wrigley (1979): Checking the identity and origin of off-types in the propagation of pedigreed wheat seed. Seed Sci. Technol. 7: 459–466.

    Google Scholar 

  4. Aragoncillo, C (1973): Proteinas CM en Triticum ssp. purification, caracterizacion y regulacion genetica. Thesis Polytechnical Univ. Madrid.

    Google Scholar 

  5. Autran, JC (1981): Recent data on the biochemical basis of durum wheat quality. (In press).

    Google Scholar 

  6. Autran, JC, and A Bourdet (1975): L’identification des variétés de blé: Etablissement d’un tableau général de détermination fondé sur le diagramme électrophorétique des gliadines du grain. Ann. Amélior. Plantes 25: 277–301.

    Google Scholar 

  7. Autran, JC, B Fleury, P Joudrier, and A Bourdet (1974): Blés hexaploides, blés tétraploides et espèces sauvages. Etude comparée de leur composition protéique et de l’hétérogénéité de certaines fractions. Symp. franco-soviétique sur l’amélioration génétique de la qualité des blés durs, Montpellier.

    Google Scholar 

  8. Autran, JC, EJL Lew, CC Nimmo, and DD Kasarda (1979): N-terminal amino acid sequencing of prolamins from wheat and related species. Nature 282: 527–529.

    CAS  Google Scholar 

  9. Avivi, L (1978): High grain protein content in wild tetraploid wheat T.dicoccoides corn. Proc. 5th Int. Wheat Genet. Symp., New Delhi: 372–380.

    Google Scholar 

  10. Balls, AK, WS Hale, and TH Harris (1942): A crystalline protein obtained from a lipoprotein of wheat flour. Cereal Chem. 29: 279–288.

    Google Scholar 

  11. Barlow, KK, JK Lee, and M Vask (1974): Morphological development of storage protein bodies in wheat. In: Bialeski, RL, AR Ferguson, and MM Creswell (eds.): Mechanisms of Regulation of Plant Growth, 763–797; Bull. 12 Rag. Soc. N.Z. Wellington.

    Google Scholar 

  12. Bates, LS, EG Heyne, and TC Roberts (1977): Wheat: Current situation and future outlook. Baker’s Dig. 51(5): 87.

    Google Scholar 

  13. Beevers, L, and RH Hagemann (1969): Nitrate reduction in higher plants. Ann. Rev. Pl. Physiol. 20: 495–522.

    CAS  Google Scholar 

  14. Bhullar, BS, KS Gill, and GS Mahl (1978): Genetic analysis of protein in wheat. Proc. 5th Int. Wheat Genet. Symp., New Delhi: 413–625.

    Google Scholar 

  15. Bietz, JA, and FR Huebner (1980): Structure of glutenin: Achievements at the northern regional research center. Ann. Technol. Agric. 29(2): 249–277.

    CAS  Google Scholar 

  16. Bietz, JA, FR Huebner, JE Sanderson, and JS Wall (1977): Wheat gliadin homology revealed through N-terminal amino-acid sequence analysis. Cereal Chem. 54: 1070–1083.

    CAS  Google Scholar 

  17. Bietz, JA, FR Huebner, and JS Wall (1973): Glutenin the strength protein of wheat flour. Baker’s Dig. 47: 26–34.

    CAS  Google Scholar 

  18. Bietz, JA, KW Sheperd, and JS Wall (1975): Single-kernel analysis of glutenin: use in wheat genetics and breeding. Cereal Chem. 52: 513–532.

    CAS  Google Scholar 

  19. Bietz, JA, and JS Wall (1972): Wheat gluten subunits: Molecular weights determined by sodium dodecyl sulfate-poly-acrylamide gel electrophoresis. Cereal Chem. 49: 416–430.

    CAS  Google Scholar 

  20. Bietz, JA, and JS Wall (1980): Identity of high-molecular gliadin and ethanol-soluble glutenin subunits of wheat: relation to gluten structure. Cereal Chem. 57: 415–421.

    CAS  Google Scholar 

  21. Biffen, RH (1909): On the inheritance of strength in wheat. J. Agric. Sci. 3: 86–91.

    CAS  Google Scholar 

  22. Black, JA, and GH Dixon (1967): Evolution of protamine: a further example of partial gene duplication. Nature 216: 152–154.

    PubMed  CAS  Google Scholar 

  23. Booth, MR, and JAD Ewart (1969): Studies on four components of wheat gliadins. Biochim. Biophys. Acta 181: 226–233.

    PubMed  CAS  Google Scholar 

  24. Bourque, DP, and SG Wildman (1972): Evidence that nuclear genes code for several chloroplast ribosomal proteins. Biochem. Biophys. Res. Commun. 50: 532–537.

    Google Scholar 

  25. Boyd, WJR, and JW Lee (1967): The control of wheat gluten synthesis at the genome and chromosome levels. Experientia 23: 332–333.

    PubMed  CAS  Google Scholar 

  26. Bozzini, A, and V Silano (1978): Control through breeding methods of factors affecting nutritional quality of cereals and grain legumes. In: Friedman, M (ed.): Nutritional Improvement of Food and Feed Protein: 249–274; Plenum Press, New York.

    Google Scholar 

  27. Branlard, G, and M Rousset (1980): Les caractéristiques électrophorétiques des gliadines et la valeur en panification du blé tendre. Ann. Amélior. Plantes 30(2): 133–149.

    Google Scholar 

  28. Brown, JWS, and RB Flavell (1981): Fractionation of wheat gliadin and glutenin subunits by two-dimensional electrophoresis and the role of group 6 and group 2 chromosomes in gliadin synthesis. Theor. Appl. Genet. 59: 349–359.

    CAS  Google Scholar 

  29. Brown, JWS, RJ Kemble, CN Law, RB Flavell (1979): Control of endosperm proteins in Triticum aestivum (var. Chinese Spring) and Aegilops umbellulata by homoeologous group 1 chromosomes. Genetics 93: 189–200.

    PubMed  CAS  Google Scholar 

  30. Burnouf, T, and R Bouriquet (1980): Glutenin subunits of genetically related European hexaploid wheat cultivars: their relation to breadmaking quality. Theor. Appl. Genet. 58: 107–111.

    CAS  Google Scholar 

  31. Burr, B, and FA Burr (1976): Zein synthesis in maize endosperm by polyribosomes attached to protein bodies. Proc. Nat. Acad. Sci. USA 73: 515–519.

    PubMed  CAS  Google Scholar 

  32. Bush, RH, and SS Maan (1974): Possible use of cytoplasmic variability in wheat improvement. Wheat Newsletter 20: 163–166.

    Google Scholar 

  33. Bushuk, W, KG Briggs, and LH Shebeski (1969): Protein quantity and quality as factors in the evaluation of bread wheats. Can. J. Plant Sci. 49: 113–122.

    Google Scholar 

  34. Bushuk, W, and CW Wrigley (1971): Glutenin in developing wheat grain. Cereal Chem. 48: 448–455.

    CAS  Google Scholar 

  35. Bushuk, W, and CW Wrigley (1974): Proteins: Composition, structure and function. In: Inglett, GE (ed.): Wheat: Production and Utilization: 119–145; Avi, Westport, Conn.

    Google Scholar 

  36. Bushuk, W, and RR Zillman (1978): Wheat cultivar identification by gliadin electrophoretograms. I. Apparatus, method and nomenclature, Can. J. Plant. Sci. 58: 505–515.

    Google Scholar 

  37. Buttrose, MS (1963): Ultrastructure of the developing wheat endosperm. Austr. J. Biol. Sci. 16: 305–317.

    Google Scholar 

  38. Caldwell, KA, and DD Kasarda (1978): Assessment of genomic and species relationships in Triticum and Aegilops by PAGE and by differential staining of seed albumins and globulins. Theor. Appl. Genet. 52: 273–280.

    CAS  Google Scholar 

  39. Campbell, WP, JW Lee, TP O’Brien, and MG Smart (1981): Endosperm morphology and protein body formation in developing wheat grain. Aust. J. Plant Physiol. 8; 5–19.

    CAS  Google Scholar 

  40. Campbell, WP, JW Lee, and DH Simmonds (1974): Protein synthesis in the developing wheat grain. In: Papers and Minutes of the 24th Ann. Conf. (Melbourne). Ray. Austr. Chem. Inst. Cereal Chem. Div. 6.

    Google Scholar 

  41. Ceccarelli, S, E Piano, GMB Gianoni, and S Arcioni (1973): Gene action and selection progress in four crosses of soft wheat. Genet. Agr. 27: 378–395.

    Google Scholar 

  42. Chapman, SR, and FH MacNeal (1970): Gene effects for grain protein in five spring wheat crosses. Crop Sci. 10: 45–46.

    Google Scholar 

  43. Charbonnier, L (1974): Isolation and characterization of gliadin fractions. Biochim. Biophys. Acta 359: 142–151.

    PubMed  CAS  Google Scholar 

  44. Charbonnier, L, T Terce-Laforgue, and J Mossé (1980): Some physicochemical properties of Triticum vulgare ß, γ and ω gliadins. Ann. Technol. Agric. 29(2): 175–190.

    CAS  Google Scholar 

  45. Chen, K, JC Gray, and SC Wildman (1975): Fraction I protein and the origin of polyploid wheats. Science 190: 1304–1306.

    CAS  Google Scholar 

  46. Clark, JA (1926): Breeding wheat for high protein content. J. Am. Soc. Agron. 18: 648–661.

    Google Scholar 

  47. Cobb, NA (1905): Universal nomenclature of wheat. Misc. Publ. 539; Dept. Agr. New South Wales, 75 pp.

    Google Scholar 

  48. Cole, EW, JG Fullington, and DD Kasarda (1981): Grain protein variability among species of Tricitum and Aegilops: Quantitative SDS-PAGE studies. Theor. Appl. Genet. 60: 17–30.

    CAS  Google Scholar 

  49. Dalling, MJ, GM Halloran, and JH Wilson (1975): The relation between nitrate reductase activity and grain nitrogen productivity in wheat. Aust. J. Agric. Res. 26: 1–10.

    CAS  Google Scholar 

  50. Damidaux, R, JC Autran, P. Grignac, and P Feillet (1978): Mise en évidence de relations applicables en sélection entre l’électrophorégramme des gliadines et les propriétés viscoélastiques du gluten de T.durum Desf., C.R. Acad. Sci. Paris 287: 701–704.

    Google Scholar 

  51. Davis, WH, GK Middleton, and TT Herbert (1961): Inheritance of protein, texture and yield in wheat. Crop Sci. 1: 235–278.

    Google Scholar 

  52. Deckard, EL, and RH Bush (1978): Nitrate reductase assays as a prediction test for crosses and lines in spring wheat. Crop. Sci. 18: 289–293.

    CAS  Google Scholar 

  53. De Ponte, R, R Parlamenti, T Petrucci, V Silano, and M Tomasi (1976): Albumin α-amylase inhibitor families from wheat flour. Cereal Chem. 53: 805–820.

    Google Scholar 

  54. Dessauer, HC, and W Fox (1956): Characteristic electrophoretic patterns of plasma proteins of orders of Amphibia and Reptilia. Science 124: 225–226.

    PubMed  CAS  Google Scholar 

  55. Dick, PL, and RJ Baker (1975): Variation and covariation of agronomic and quality traits in two spring wheat populations. Crop Sci. 15: 161–165.

    Google Scholar 

  56. Diehl, AL, VA Johnson, and PJ Mattern (1978): Inheritance of protein and lysine in three wheat crosses. Crop Sci. 18: 391–395.

    CAS  Google Scholar 

  57. Doekes, GJ (1973): Inheritance of gliadin composition in bread wheat Triticum aestivum L. Euphytica 22: 28–34.

    Google Scholar 

  58. Donovan, GR, JW Lee, and RD Hill (1977): Compositional changes in the developing grain of high- and low-protein wheats. II Starch and protein synthetic capacity. Cereal Chem. 54: 646–656.

    CAS  Google Scholar 

  59. Dunker, AK, and RR Rueckert (1974): Observations on molecular weight determinations on Polyacrylamide gel electrophoresis. J. Biol. Chem. 244: 5074–5080.

    Google Scholar 

  60. Dvorak, J (1972): Genetic variability in Aegilops speltoides affecting homoeologous pairing in wheat. Can. J. Genet. Cytol. 14: 371–380.

    Google Scholar 

  61. Dvorak, J (1976): The relationships between the genome of Triticum urartu and the A and B genomes of Triticum aestivum. Can. J. Genet. Cytol. 18: 371–377.

    Google Scholar 

  62. Edwards, IB (1973): Physiologic and genetic studies of nitrate reductase activity and nitrogen distribution in spring wheat (Triticum aestivum L.). Thesis, North Dakota State University, Fargo.

    Google Scholar 

  63. Edwards, IB (1974): Heritability estimates of nitrate reductase activity in spring wheat and the chromosomal location of genes effecting nitrogen reduction. 5th South Afr. Genet. Congr. (Abstr.).

    Google Scholar 

  64. Eilrich, GL, and RH Hageman (1973): Nitrate reductase activity and its relationship to accumulation of vegetative and grain nitrogen in wheat. Crop Sci. 13: 59–66.

    CAS  Google Scholar 

  65. Ellis, RP (1971): The identification of wheat varieties by the electrophoresis of grain proteins. J. Nat. Inst. Agric. Bot. 12: 223–235.

    Google Scholar 

  66. Evers, AD (1970): Development of the endosperm of wheat. Ann. Bot. 34: 547–555.

    Google Scholar 

  67. Ewart, JAD (1968): Fractional extraction of cereal flour proteins. J. Sci. Food Agric. 19: 241–245.

    CAS  Google Scholar 

  68. Favret, EA, L Manghers, R Solari, A Avila, and JC Monsiglio (1970): Gene control of protein production in cereal seeds. Improving Plant Protein by Nuclear Techniques: 87–95; IAEA Vienna.

    Google Scholar 

  69. Favret, EA, R Solari, L Manghers, and A Avila (1969): Genetic control of the qualitative and quantitative production of endosperm proteins in wheat and barley. New Approaches to Breeding for Plant Protein Improvement: 87–107; IAEA Vienna.

    Google Scholar 

  70. Feillet, P (1976): Les albumines et globulines du blé. Ann. Technol. Agric. 25(2): 203–216.

    Google Scholar 

  71. Feillet, P (1977): La qualité des pâtes alimentaires. Ann. Nutr. Diet. 12: 299.

    CAS  Google Scholar 

  72. Feillet, P and V Abecassis (1976): Valeur d’utilisation des blés durs. Semaine d’étude de céréaliculture, Gembloux, pp. 551.

    Google Scholar 

  73. Feillet, P, and K Kobrehel (1972): Recherche et dosage des produits de blé tendre dans les pâtes alimentaires par électrophorèse des protéines solubles. Ann. Technol. Agric. 21: 17–24.

    CAS  Google Scholar 

  74. Feldman, M (1978): New evidence on the origin of the B genome of wheat. Proc. 5th Intern. Wheat Genet. Symp. New Delhi: 120–132.

    Google Scholar 

  75. Fisher, M, DG Redman, and GAH Elton (1968): Fractionation and characterization of purothionin. Cereal Chem. 45: 48–57.

    CAS  Google Scholar 

  76. Fulcher, RG, TP O’Brien, and DH Simmonds (1972): Localization of arginine-rich proteins in mature seeds of some members of the Gramineae. Aust. J. Biol. Sci. 25: 487–497.

    CAS  Google Scholar 

  77. Gallagher, LW, KM Soliman, CO Qualset, KC Huffaker, and DW Rains (1980): Major gene control of nitrate reductase activity in common wheat. Crop Sci. 20: 717–721.

    CAS  Google Scholar 

  78. Ganapathy, SN, and RG Chitre (1970): Factors affecting the utilization of millet protein by rats. Fed. Proc. Fed. Amer. Soc. Exp. Biol. 29: 761 Abs.

    Google Scholar 

  79. Gandilyan, PA (1972): Wild-growing species of Triticum of the Armenian SSR. Both. Zh. 57, 2.

    Google Scholar 

  80. Garcia-Olmedo, F, and P Carbonero (1970): Homeologous proteins synthesis controlled by homeologous chromosomes in wheat. Phytochem. 9: 1495–1497.

    CAS  Google Scholar 

  81. Garcia-Olmedo, F, P Carbonero, C Aragoncillo, and G Salcedo (1978): Chromosomal control of wheat endosperm proteins: A critical review. Seed Protein Improvement by Nuclear Techniques: 555–566; IAEA Vienna.

    Google Scholar 

  82. Gill, KS, SS Bains, G Sing, and KS Bains (1973): Partial diallel test crossing for yield and its components in T. aestivum L. Proc. 4th Int. Wheat Gen. Symp., Columbia: 29–33.

    Google Scholar 

  83. Gill, KS, and GS Brar (1973): Genetic analysis of grain protein and its relationship with some economic traits in T. aestivum L. Indian J. Agric. Sci. 43: 173–176.

    CAS  Google Scholar 

  84. Graham, JSL, RK Morton, and JK Raison (1963): Isolation and characterization of protein bodies from developing wheat endosperm. Aust. J. Biol. Sci. 16: 375–383.

    CAS  Google Scholar 

  85. Graham, JSD, RK Morton, and JK Raison (1964): The in vivo uptake and incorporation of radioisotopes into proteins of wheat endosperm. Aust. J. Biol. Sci. 17: 102–114.

    CAS  Google Scholar 

  86. Hagberg, A, KE Karlsson, and L Munck (1970): Use of hiproly in barley breeding. Improving Plant Protein by Nuclear Techniques: 121–132; IAEA Vienna.

    Google Scholar 

  87. Haidane, JBS (1942): New Paths in Genetics. Harpers, New York and London.

    Google Scholar 

  88. Hall, O (1959): Immuno-electrophoretic analyses of allopolyploid rye wheat and its parental species. Hereditas 45: 495–504.

    Google Scholar 

  89. Hall, O, and BL Johnson (1962): Electrophoretic analysis of the amphiploid of Stipa viridula × Oryzopsis hymenoides and its parental species. Hereditas 48: 530–535.

    CAS  Google Scholar 

  90. Halloran, GM (1975): Genetic analysis of grain protein percentage in wheat. Theor. Appl. Genet. 46: 79–86.

    Google Scholar 

  91. Harlan, J (1976): Genetic resources in wild relatives of crops. Crop Sci. 16: 329–333.

    Google Scholar 

  92. Harlan, JR, and JM de Wet (1975): On O Winge and a prayer. The origin of polyploidy. Bot. Rev. 41: 361–390.

    Google Scholar 

  93. Harper, AE, DA Benton, and CA Elvehjem (1955): L-leucine, an isoleucine antagonist in the rat. Arch. Biochem. Biophys. 57: 1–12.

    PubMed  CAS  Google Scholar 

  94. Haunold, A, VA Johnson, and JW Schmidt (1962): Genetic measurements of protein in the grain of T. aestivum L. Agron. J. 54: 203–206.

    Google Scholar 

  95. Hernandez, HH, DE Walsh, and A Bauer (1974): Nitrate reductase of wheat: Its relation to nitrogen fertilization. Cereal Chem. 51: 330–336.

    CAS  Google Scholar 

  96. Hinton, JJC (1947): The distribution of vitamin B-1 and nitrogen in the wheat grain. Proc. Roy. Soc. (London) 13: 134–148.

    Google Scholar 

  97. Hinton, JJC (1955): Resistance of the testa to entry of water into the wheat kernel. Cereal Chem. 32: 296–306.

    CAS  Google Scholar 

  98. Hinton, JJC (1959): The distribution of ash in the wheat kernel. Cereal Chem. 36: 19–31.

    CAS  Google Scholar 

  99. Holt, LM, R Astin, and PI Payne (1981): Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin. Theor. Appl. Genet. 60: 237–243.

    CAS  Google Scholar 

  100. Hsu, CS, and FW Susulski (1969): Inheritance of protein content and sedimentation value in diallel crosses of spring wheat (T. aestivum L.). Can. J. Genet. Cytol. 11: 967–976.

    Google Scholar 

  101. Ingversen, J, B Køie, and H Doll (1973): Induced seed protein mutant of barley. Experientia 29: 1151–1152.

    CAS  Google Scholar 

  102. Jaaska, VV (1970): Biochemical data on the origin of Transcaucasian endemic wheats. Eesti KSV Tea, Akad. Toim. Biol. 19(4): 344.

    CAS  Google Scholar 

  103. Jacob, F, and J Monod (1961): Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3: 318–356.

    PubMed  CAS  Google Scholar 

  104. Jagannath, DR, and CR Bhatia (1972): Effect of rye chromosome 2 substitution on kernel protein content of wheat. Theor. Appl. Genet. 42: 89–92.

    Google Scholar 

  105. Jain, HK, NC Singhal, MP Singh, and A Austin (1975): An approach to breeding for higher protein content in bread wheat. Breeding for Seed Protein Improvement using Nuclear Techniques: 39–46; IAEA Vienna.

    Google Scholar 

  106. Jeanjean, MF, R Damidaux, and P Feillet (1980): Effect of heat treatment on protein solubility and viscoelastic properties of wheat gluten. Cereal Chem. 57: 325–331.

    CAS  Google Scholar 

  107. Jenkins, JA (1929): Chromosome homologies in wheat and Aegilops. Amer. J. Bot. 16: 238–245.

    Google Scholar 

  108. Jennings, AA, and RK Morton (1963): Changes in carbohydrate, protein and non protein nitrogenous compounds of developing wheat grain. Aust. J. Biol. Sci. 16: 318–331.

    CAS  Google Scholar 

  109. Jennings, AC, and RK Morton (1963): Changes in the nucleic acids and other phosphorus containing compounds of developing wheat grain. Aust. J. Biol. Sci. 16: 332–341.

    CAS  Google Scholar 

  110. Jensen, J, JH Jorgensen, HP Jensen, H Giese, and H Doll (1980): Linkage of the Hordein loci Hor1 and Hor2 with the powdery mildew resistance loci M1-k and M1-a on barley chromosome 5. Theor. Appl. Genet. 58: 27–31.

    CAS  Google Scholar 

  111. Johnson, BL (1967a): Confirmation of the genome donors of Aegilops cylindrica. Nature (London) 216: 859–862.

    Google Scholar 

  112. Johnson, BL (1967b): Tetraploid wheats: seed protein electrophoresis pattern of the emmer and timopheevi groups. Science 158: 131–132.

    PubMed  CAS  Google Scholar 

  113. Johnson, BL (1972): Seed protein profiles and the origin of the hexaploid wheats. Amer. J. Bot. 59: 952–960.

    CAS  Google Scholar 

  114. Johnson, BL (1972): Protein electrophoretic profiles and the origin of the B genome of wheat. Proc. Nat. Acad. Sci. USA 69: 1398–1402.

    PubMed  CAS  Google Scholar 

  115. Johnson, BL (1975): Identification of the apparent B-genome donor of wheat. Can. J. Genet. Cytol. 17: 21–39.

    Google Scholar 

  116. Johnson, BL (1975): Seed protein patterns and the gene resources of wheat. In: Scarascia Mugnozza, GT (ed.): Genetics and Breeding of Durum Wheat: 153–164.

    Google Scholar 

  117. Johnson, BL, D Barnhart, and O Hall (1967): Analysis of genome and species relationships in the polyploid wheats by protein electrophoresis. Amer. J. Bot. 54: 1089–1098.

    CAS  Google Scholar 

  118. Johnson, BL, and HS Dhaliwal (1976): Reproductive isolation of T. boeoticum and Triticum urartu and the origin of the tetraploid wheats. Amer. J. Bot. 63: 1088–1094.

    Google Scholar 

  119. Johnson, BL, and O. Hall (1965): Analysis of phylogenetic affinities in the Triticinae by protein electrophoresis. Amer. J. Bot. 52: 506–513.

    Google Scholar 

  120. Johnson, BL, and O Hall (1966): Electrophoretic studies of species relationships in Triticum. Acta Agric. Scand. Suppl. 16: 222–224.

    Google Scholar 

  121. Johnson, VA, and PJ Mattern (1972): Improvement of the nutritional quality of wheat through increased protein content and improved amino acid balance. Summary report of research findings. July 1, 1966-Dec. 31, 1972. Contract AID/Csd-1208. Agency for Internat. Developm. Departm. of State. Washington, D.C.

    Google Scholar 

  122. Johnson, VA, and PJ Mattern (1975): Improvement of the nutritional quality of wheat protein through increased protein content and improved amino acid balance. Report of research findings. Jan. 1, 1973-March 31, 1975. Contracts AID/Csd-1208 and AID/ta-C-1093. Agency for Internat. Developm. Departm. of State. Washington, D.C.

    Google Scholar 

  123. Johnson, VA, PJ Mattern, and SL Kuhr (1978): Genetic improvement of wheat protein. Seed Protein Improvement in Cereals and Grain Legumes II: 165–181; IAEA Vienna.

    Google Scholar 

  124. Johnson, VA, PJ Mattern, and JW Schmidt (1967): Nitrogen relations during spring growth in varieties of T. aestivum L. differing in grain protein content. Crop Sci. 7: 664–667.

    Google Scholar 

  125. Johnson, VA, PJ Mattern, and JW Schmidt (1970): The breeding of wheat and maize with improved nutritional value. Proc. Nut. Soc. 29: 20–31.

    CAS  Google Scholar 

  126. Johnson, VA, PJ Mattern, and JW Schmidt (1972): Genetic studies of wheat protein. In: Inglett, GE (ed.): Symposium: Seed Proteins: 126–136; AVI Publ. Co. Westport, Conn.

    Google Scholar 

  127. Johnson, VA, PJ Mattern, and KP Vogel (1975): Cultural, genetic and other factors affecting quality of wheat. In: Spencer, A (ed.): Bread: Social, Nutritional and Agricultural Aspects of Wheat Bread: 127–140; Appl. Sci. Publ. London.

    Google Scholar 

  128. Johnson, VA, PJ Mattern, DA Whited, and J Schmidt (1969): Breeding for high protein control and quality in wheat. New Approaches to Breeding for Improved Plant Protein: 29–40; IAEA Vienna.

    Google Scholar 

  129. Johnson, VA, JW Schmidt, and PJ Mattern (1971): Protein improvement in wheat. In: Proc. 3rd FAO/Rockfeller Foundation Wheat Seminar, Ankara: 166–172.

    Google Scholar 

  130. Johnson, VA, JW Schmidt, PJ Mattern, and A Haunold (1963): Agronomic and quality characteristics of high protein F2 derived families from a soft red winter-hard red winter cross. Crop Sci. 3: 3–10.

    Google Scholar 

  131. Johnson, VA, JW Schmidt, and JE Stroike (1973): Genetic advances in wheat protein quantity and composition. Proc. 4th Intern. Wheat Genet. Symp., Columbia: 547.

    Google Scholar 

  132. Johnson, VA, KD Wilhelmi, SL Kuhr, PJ Mattern, and JW Schmidt (1978): Breeding progress for protein and lysine in wheat. Proc. 5th Int. Wheat Genetic Symp., New Delhi: 825–835.

    Google Scholar 

  133. Jones, BC, and AS Mak (1977): Amino acid sequences of the two α-purothionins of hexaploid wheat. Cereal Chem. 54: 511–523.

    CAS  Google Scholar 

  134. Jones, RW, GE Babcock, NW Taylor, and FR Senti (1961): Molecular weights of wheat gluten fractions. Arch. Biochem. Biophys. 94: 483–493.

    PubMed  CAS  Google Scholar 

  135. Jones, RW, GL Lookhart, SB Hall, and KF Finney (1980): Polyacrylamide gel electrophoretic pattern of gliadin proteins from the 80 most commonly grown U.S. wheat varieties. 65th Ann. Meet. Amer. Assoc. Cereal Chem.

    Google Scholar 

  136. Jones, RW, NW Taylor, and FR Senti (1959): Electrophoresis and fractionation of wheat gluten. Arch. Biochem. Biophys. 84: 363–376.

    PubMed  CAS  Google Scholar 

  137. Kakade, ML (1974): Biochemical basis for the differences in plant protein utilization. J. Agric. Food Chem. 22: 550–555.

    PubMed  CAS  Google Scholar 

  138. Kasarda, DD (1980): Structural and properties of α-gliadines. Ann. Technol. Agric. 29(2): 151–173.

    CAS  Google Scholar 

  139. Kasarda, DD, JE Bernardin, and CC Nimmo (1976): Wheat proteins. Adv. Cereal Sci. Technol. 1: 158–236.

    CAS  Google Scholar 

  140. Kasarda, DD, JE Bernardin, and CO Qualset (1974): Relationship of gliadin protein components to chromosomes through the use of substitution lines. Cereal Sci. Today 19: 403–?.

    Google Scholar 

  141. Kasarda, DD, JE Bernardin, and CO Qualset (1976): Relationship of gliadin protein components to chromosomes in hexaploid wheats (T. aestivum L.). Proc. Nat. Acad. Sci. (Wash.) 73: 3646–3650.

    CAS  Google Scholar 

  142. Kaul, AK, and FW Susulski(1965): Inheritance of flour protein content in a Selkirk × Gabo cross. Can. J. Gen. Cytol. 7: 12–17.

    Google Scholar 

  143. Kent, NI (1966): Subaleurone cells of high protein content. Cereal Chem. 43: 585–601.

    CAS  Google Scholar 

  144. Kent, NI, and AD Evers (1969): Variation in protein composition within the endosperm of hard wheat. Cereal Chem. 46: 293–300.

    CAS  Google Scholar 

  145. Kessler, E (1955): Role of photochemical processes in the reduction of nitrate by green algae. Nature 176: 1069–1070.

    CAS  Google Scholar 

  146. Kessler, E (1957): In: Research in Photosynthesis. Interscience Publishers. New York, pp. 250.

    Google Scholar 

  147. Khan, K, and W Bushuk (1977): Glutenin: structure and functionality in bread making. Proc. 10th Nat. Conf. Wheat Utilization Research, Tucson: 101–115.

    Google Scholar 

  148. Kihara, H (1919): Über cytologische Studien bei einigen Getreidearten. I. Spezies-Bastarde des Weizens und Weizenroggen-Bastarde. Bot. Mag. (Tokyo) 33: 17–38.

    Google Scholar 

  149. Kihara, H (1924): Cytologische und genetische Studien bei wichtigen Getreidearten mit besonderer Rücksicht auf das Verhalten der Chromosomen und die Sterilität in den Bastarden. Mem. Coll. Sci. Kyoto Imp. Univ. Ser. B Vol. 1.

    Google Scholar 

  150. Kihara, H (1944): Die Entdeckung der DD-Analysatoren beim Weizen. Agr. Hort. (Tokyo) 19: 889–890.

    Google Scholar 

  151. Kihara, H (1954): Considerations on the evolution and distribution of Aegilops species based on the analyser method. Cytologia 19: 336–357.

    Google Scholar 

  152. Kihara, H (1966): Factors affecting the evolution of common wheat. Indian J. Gen. Pl. Breed. 26a: 14–28.

    Google Scholar 

  153. Kihara, H, and K Tsunewaki (1968): Some fundamental problems underlying the program for hybrid wheat breeding. Seiken Zihô 16: 1–14.

    Google Scholar 

  154. Kimber, G (1973): The relationships of the S genome diploids to polyploid wheats. Proc. 4th Int. Wheat Genet. Symp., Columbia: 81–85.

    Google Scholar 

  155. Kimber, G (1974): A reassessment of the origin of the polyploid wheat. Genetics 78: 487–492.

    PubMed  CAS  Google Scholar 

  156. Kimber, G, and Athwal (1972): A reassessment of the course of evolution in wheat. Proc. Natl. Acad. Sci. USA 69: 912–915.

    PubMed  CAS  Google Scholar 

  157. Klepper, LA (1976): Nitrate assimilation enzymes and seed protein in wheat. Proc. 2nd Int. Winter Wheat Conf. Zagreb: 334–340.

    Google Scholar 

  158. Kobayashi, K, and JL Fox (1978): The evolution of protein sequences by repetitions gene duplication: clostridial flavodoxin. J. Mol. Evol. 11: 233–243.

    PubMed  CAS  Google Scholar 

  159. Kobrehel, K (1980): Extraction of wheat proteins with salts of fatty acids and their electrophoretic characterization. Ann. Technol. Agric. 29(2): 125–132.

    CAS  Google Scholar 

  160. Konarev, AV (1975): Differentiation of the first genomes of polyploid wheats, based on data from immunochemical analysis of the alcohol fraction of the grain protein. Bull. VIR 47.

    Google Scholar 

  161. Konarev, AV, IP Gavrilyuk, and EP Migushova (1974): Differentiation of diploid wheats as indicated by immunochemical analysis. Dokl. Vses Acad. Skh. Nauk. (USSR) 6: 12.

    Google Scholar 

  162. Konarev, AV, EP Migushova, IP Gavrilyuk, and VG Konarev (1971): On the nature of the genome of wheats of the T. timopheevi group as indicated by eletrophoretic and immunochemical analysis. Dokl. Vses. Akad. Skh. Nauk. 4: 13.

    Google Scholar 

  163. Konarev, VG, IP Gavrilyuk, NK Gubareva, and TI Peneva (1979): Seed proteins in genome analysis, cultivar identification and documentation of cereal genetic resources: a review. Cereal Chem. 56: 272–278.

    Google Scholar 

  164. Konarev, VG, IP Gavrilyuk, TI Peneva, AV Konarev, AG Khakimova, and EP Migushova (1976): The nature and origin of polyploid wheat genomes based on data from grain protein biochemistry and immunochemistry. Agric. Biol. 11(5): 656–665 (Russian).

    Google Scholar 

  165. Konzak, CF (1977): Genetic control of the content, amino acid composition and processing properties of proteins in wheat. Adv. Gen. 19: 407–582.

    CAS  Google Scholar 

  166. Kosmolak, FG, JE Dexter, RR Matsuo, D Leisle, and BA Marchylo (1980): A relationship between durum wheat quality and gliadin electrophoregrams. Can. J. Pl. Sci. 60: 427–432.

    Google Scholar 

  167. Kostov, D (1940): Origin and selection of wheats from the cytogenetic point of view. Izv. Akad. Nauk. USSR Ser. Biol. 1.

    Google Scholar 

  168. Kuckuck, H (1964): Experimentelle Untersuchungen zur Entstehung der Kulturweizen. Z. Pflanzenzüchtg. 51: 97–140.

    Google Scholar 

  169. Kuspira, J, and J Unrau (1957): Genetic analysis of certain characters in common wheat using whole chromosome substitution lines. Can. J. Pl. Sci. 37: 300–326.

    Google Scholar 

  170. Ladizinsky, G, and BL Johnson (1972): Seed protein homologies and the evolution of pohploidy in Avena. Can. J. Genet. Cytol. 14: 875–888.

    Google Scholar 

  171. Lafiandra, D, E Porceddu, and G Colaprico (1979): Aminoacid composition and species relationships in genus Triticum. Wheat Int. Serv. 50: 51–55.

    Google Scholar 

  172. Larkins, BA, and WJ Hurkman (1978): Synthesis and deposition of zein in protein bodies of maize endosperm. Pl. Physiol. 62: 256–263.

    CAS  Google Scholar 

  173. Lawrence, GJ, and KW Shepherd (1980): Variation in glutenin protein subunits of wheat. Aust. J. Biol. Sci. 33: 221–233.

    CAS  Google Scholar 

  174. Lawrence, GJ, and KW Shepherd (1981): Inheritance of glutenin protein subunits of wheat. Theor. Appl. Genet. 60: 333–337.

    CAS  Google Scholar 

  175. Lawrence, GJ, and KW Shepherd (1981b): Chromosomal location of genes controlling seed proteins in species related to wheat. Theor. Appl. Genet. 59: 25–31.

    CAS  Google Scholar 

  176. Lawrence, JM, KM Day, E Huey, and B Lee (1958): Lysine content of wheat varieties, species and related genera. Cereal Chem. 35: 169–178.

    CAS  Google Scholar 

  177. Lebsock, KL, CC Fifield, GM Gurney, and W Greenaway (1964): Variation and evaluation of mixing tolerance, protein content and sedimentation value in early generations of spring wheat, T. aestivum L. Crop Sci. 4: 171–174.

    Google Scholar 

  178. Lee, JW, and JA Ronalds (1967): Effect of environment on wheat gliadin. Nature 213: 844.

    CAS  Google Scholar 

  179. Lilienfeld, F, and H Kihara (1934): Genomanalyse bei Triticum und Aegilops V. Triticum timopheevi Zhuk. Cytologia 6: 87–122.

    Google Scholar 

  180. Lofgren, JR, KF Finney, EG Heyne, LC Bolte, RC Hoseney, and MD Shogren (1968): Heritability estimates of protein content and certain quality and agronomic properties in bread wheats (T. aestivum L.). Crop Sci. 8: 563–567.

    Google Scholar 

  181. Losada, M, JM Paneque, and FF Rodriguez del Campo (1963): Mechanism of nitrite reduction in chloroplasts. Biochem. Biophys. Res. Commun. 10: 298–310.

    CAS  Google Scholar 

  182. Maan, SS (1973): Cytoplasmic and cytogenetic relationships among tetraploid Triticum species. Euphytica 22: 287–300.

    Google Scholar 

  183. Maan, SS (1973): Cytoplasmic variability in Triticinae. Proc. 4th Int. Wheat Genet. Symp. Columbia: 367–373.

    Google Scholar 

  184. Maan, SS (1975): Cytoplasmic variability of speciation in Triticinae. In: Wali, MKJ (ed.): Prairie: A multiple View: 255–281; Ground Forks, N.D., Univ. N. Dakota Press.

    Google Scholar 

  185. Maan, SS (1975): Cytoplasmic male-sterility and male-fertility systems in wheat. In: Scarascia Mugnozza, GT (ed.): Genetics and Breeding of Durum Wheat: 117–137.

    Google Scholar 

  186. Maan, SS, and KA Lucken (1972): Interacting male sterility-fertility restoration systems for hybrid wheat research. Crop Sci. 12: 360–364.

    Google Scholar 

  187. MacKey, J (1966): Species relationship in Triticum. Hereditas Suppl. 2: 237–276.

    Google Scholar 

  188. MacKey, J (1968): Relationships in the Triticinae. 3rd Int. Wheat Genet. Symp. Canberra.

    Google Scholar 

  189. MacMasters, MM, JJC Hinton, and D Bradbury (1971): Microscopic structure and composition of the wheat kernel. In: Pomeranz, Y (ed.): Wheat Chemistry and Technology: 51–113; AACC Cereal Chem. Inc. St. Paul, Minn.

    Google Scholar 

  190. Mac Ritchie, R (1973): Conversion of a weak flour to a strong one by increasing the proportion of its high molecular weight gluten protein. J. Sci. Food Agric. 24: 1325–1329.

    CAS  Google Scholar 

  191. Mak, AS, and BL Jones (1976): Separation and characterization of chymotyptic peptides from α and ß-purothionins of wheat. J. Sci. Food Agric. 27: 205–213.

    PubMed  CAS  Google Scholar 

  192. Mak, AS, and BL Jones (1976): The amino acid sequence of wheat ß-purothionin. Can. J. Biochem. 54: 835.

    PubMed  CAS  Google Scholar 

  193. Makhlayeva, PF, and SL Tyuterev (1973): Study of wheat genomes and their wild relatives, using the method of molecular hybridization of DNA-DNA. Tr. VIR 52(1).

    Google Scholar 

  194. Mares, DJ, K Horstog, and BA Stone (1975): Early stages in the development of wheat endosperm. 1) The change from free nuclear to cellular endosperm. Aust. J. Biol. 23: 311–326.

    Google Scholar 

  195. Matsuo, RR, and GM Irvine (1975): Rheology of durum wheat products. Cereal Chem. 52: 131–135.

    Google Scholar 

  196. Mattern, PJ, R Morris, JW Schmidt, and VA Johnson (1973): Locations of genes for kernel properties in the wheat variety Cheyenne using chromosome substitution lines. Proc. 4th Int. Wheat Genet. Symp., Columbia: 703–707.

    Google Scholar 

  197. Mattern, PJ, A Salem, VA Johnson, and JW Schmidt (1968): Amino acid composition of selected high protein wheats. Cereal Chem. 45: 437–444.

    CAS  Google Scholar 

  198. Mattern, PJ, A Salem, and GH Volkmer (1968): Modification of the Maes continuous-extraction process for fractionation of hard red winter wheat flour proteins. Cereal Chem. 45: 319–328.

    CAS  Google Scholar 

  199. Mattern, PJ, JW Schmidt, R Morris, and VA Johnson (1968): A feasibility study of the use of a modified Maes protein extraction process and chromosome substitution lines for bread wheat quality identification. Proc. 3rd Int. Wheat Genet. Symp., Canberra: 449–456.

    Google Scholar 

  200. McDermoth, EE, and J Pace (1960): Comparison of the amino acid composition of the protein in flour and endosperm from different types of wheat with particular reference to variation in lysine content. J. Sci. Fd. Agr. 11: 109–115.

    Google Scholar 

  201. McFadden, ES, and ER Sears (1944): The artificial synthesis of Triticum Spelta. Records Genet. Soc. Am. 13: 26–27 (Abstr.).

    Google Scholar 

  202. McFadden, ES, and ER Sears (1946): The origin of Triticum spelta and its free threshing hexaploid relatives. J. Hered. 37: 81–89: 107–116.

    PubMed  Google Scholar 

  203. Mecham, DK, DD Kasarda, and CO Qualset (1978): Genetic aspects of wheat gliadin proteins. Biochem. Genet. 16: 831–853.

    PubMed  CAS  Google Scholar 

  204. Meredith, P (1965): On the solubility of gliadinlike proteins. I. Solubility in nonaqueous media. Cereal Chem. 42: 54–63.

    Google Scholar 

  205. Meredith, P (1965): On the solubility of gliadinlike proteins. III. Fractionation by solubility. Cereal Chem. 42: 149–160.

    CAS  Google Scholar 

  206. Meredith, P, HG Sammons, and AC Frazer (1960): Examination of wheat gluten by partial solubility methods. I. Partition by organic solven. J. Sci. Food Agric. 11: 320–328.

    CAS  Google Scholar 

  207. Mertz, ET, LS Bates, and OE Nelson (1964): Mutant gene that changes protein composition and increases lysine content in maize endosperm. Science 145: 279–280.

    PubMed  CAS  Google Scholar 

  208. Middleton, CE, E Bode, and BB Bayles (1954): A comparison of the quality of protein in certain varieties of soft wheat. Agron. J. 46: 500–502.

    CAS  Google Scholar 

  209. Miezen, K, EG Heyne, and KF Finney (1977): Genetic and environmental effects on the grain protein content in wheat. Crop Sci. 17: 591–593.

    Google Scholar 

  210. Miflin, BJ (1978): Energy considerations in nitrogen metabolism. In: Miflin, BJ, and M. Zoschke (eds.): Carbohydrate and Protein Synthesis. A Seminar held in Giessen (Germany), September 7–9/1977: 13–32.

    Google Scholar 

  211. Miflin, BJ, and PJ Lea (1976): The pathway of nitrogen assimilation in plants. Phytochemistry 15: 873–885.

    CAS  Google Scholar 

  212. Miflin, BJ, and PJ Lea (1977): Amino acid metabolism. Ann. Rev. Pl. Physiol. 28: 299–329.

    CAS  Google Scholar 

  213. Miflin, BJ, and PR Shewry (1979): The biology and biochemistry of cereal seed prolamins. Seed Protein Improvement in Cereals and Grain Legumes I: 137–158; IAEA Vienna.

    Google Scholar 

  214. Mihaljev, I, and M Kovocev-Djolai (1978): Inheritance of grain content in a diallel wheat cross. Proc. 5th Intern. Wheat Genet. Symp. New Delhi: 755–761.

    Google Scholar 

  215. Minotti, LA, and WA Jackson (1970): Nitrate reduction in the roots and shoots of wheat seedlings. Planta 86: 267–271.

    Google Scholar 

  216. Mitra, R, and CR Bhatia (1973): Studies on protein biosynthesis in developing wheat kernels. Nuclear Techniques for Seed Protein Improvement: 379–389; IAEA Vienna.

    Google Scholar 

  217. Morris, R, JW Schmidt, PJ Mattern, and VA Johnson (1966): Chromosomal locations of genes for flour quality in the wheat variety Cheyenne using substitution lines. Crop Sci. 6: 119–122.

    Google Scholar 

  218. Morris, R, JW Schmidt, PJ Mattern, and VA Johnson (1968): Quality tests for six substitution lines involving Cheyenne wheat chromosomes. Crop Sci. 8: 121–122.

    Google Scholar 

  219. Morris, MR, JW Schmidt, PJ Mattern, and VA Johnson (1973): Chromosomal locations of genes for high protein in the wheat cultivar Atlas 66. In: Proc. 4th Int. Wheat Genet. Symp. Columbia: 715–718.

    Google Scholar 

  220. Morris, R, and ER Sears (1967): The cytogenetics of wheat and its relatives. In: Quinsbery, and Reitz(eds.): 19–87; Madison.

    Google Scholar 

  221. Morton, RK, BA Palk, and JK Raison (1964): Intracellular components associated with protein synthesis in developing wheat endosperm. Biochem. J. 91: 252–258.

    Google Scholar 

  222. Morton, RK, and JK Raison (1963): A complete intracellular unit for incorporation of amino acid into storage protein utilizing adenosine triphospate generated from phytate. Nature 200: 429–433.

    PubMed  CAS  Google Scholar 

  223. Munaver, SM, and AE Harper (1959): Amino acid balance and imbalance. II. Dietary level of protein and lysine requirement. J. Nutr. 69: 58–64.

    PubMed  CAS  Google Scholar 

  224. Müntz, K, K Hammer, C Lehmann, A Meister, A Rudolph, and F Scholz (1979): Variability of protein and lysine content in barley and wheat specimens from the world collection of cultivated plants at Gatersleben. Seed Protein Improvement in Cereals and Grain Legumes. II: 183–200; IAEA Vienna.

    Google Scholar 

  225. Nielsen, HC, GE Babcock, and FR Senti (1962): Molecular weight studies on glutenin before and after disulfide-bond splitting. Arch. Biochem. Biophys. 96: 252–258.

    PubMed  CAS  Google Scholar 

  226. Nielsen, HC, AC Beckwith, and JS Wall (1968): Effect of disulfide-bond cleavage on wheat gliadin fractions obtained by gel filtration. Cereal Chem. 45: 37–47.

    CAS  Google Scholar 

  227. Nilsson-Ehle, H (1909): Kreuzungsuntersuchungen an Hafer und Weizen. Lund Univ. Arskr. Afd. 2, 5: 122.

    Google Scholar 

  228. Nilsson-Ehle, H (1911): Kreuzungsuntersuchungen an Hafer und Weizen. Lund Univ. Arskr. Afd. 2, 7: 1–82.

    Google Scholar 

  229. Nimmo, CC, DD Kasarda, and EJL Lew (1974): Physical characterization of the wheat protein purothionin. J. Sci. Food Agric. 25: 607–617.

    PubMed  CAS  Google Scholar 

  230. Orth, RA, and W Bushuk (1972): A comparative study of the proteins of wheats of diverse baking qualities. Cereal Chem. 49: 268–275.

    CAS  Google Scholar 

  231. Orth, RA, and W Bushuk (1973): Studies of glutenin. Relation of variety, location of growth and baking quality to molecular weight distribution of subunits. Cereal Chem. 50: 191–197.

    CAS  Google Scholar 

  232. Osborne, TB (1907): The proteins of the wheat kernel. Carnegie Inst. Washington Publ. 84: 1–119.

    Google Scholar 

  233. Paneque, A, FF Del Campo, and M Losada (1963): Nitrite reduction by isolated chloroplasts in light. Nature 198: 90–91.

    CAS  Google Scholar 

  234. Pathak, GN (1940): Studies in the cytology of cereals. J. Genet. 39: 437–467.

    Google Scholar 

  235. Payne, PR (1978): Human protein requirements. In: Norton, G (ed.): Plant Proteins: 247–263; Butterworths, London.

    Google Scholar 

  236. Payne, PI (1981): Breeding for protein quantity and protein quality in seed crop. In: Int. Symp. on Seed Proteins, Versailles, (in press).

    Google Scholar 

  237. Payne, PI, KG Corfield, and JA Blackman (1979): Identification of a high-molecular-weight subunit of glutenin whose presence correlates with bread-making quality in wheats of related pedigree. Theor. Appl. Genet. 55: 153–159.

    CAS  Google Scholar 

  238. Payne, PI, KG Corfield, LM Holt, and JA Blackman (1981b): Correlations between the inheritance of certain high molecular weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J. Sci. Food Agric. 32: 51–60.

    Google Scholar 

  239. Payne, PI, PA Harris, CN Law, LM Holt, and JA Blackman (1980b): The high-molecular weight subunits of glutenin: structure, genetics and relationship to bread-making quality. Ann. Technol. Agric. 29: 309–320.

    CAS  Google Scholar 

  240. Payne, PI, LM Holt, and CN Law (1981a): Structural and genetical studies on the high-molecular subunits of wheat glutenin. Part I. Allelic variation in subunits amongst varieties of wheat. (T. aestivum). Theor. Appl. Genet. 60: 229–236.

    Google Scholar 

  241. Payne, PI, LM Holt, GJ Lawrence, and CN Law (1982): The genetics of gliadin and glutenin, the major storage proteins of the wheat endosperm. Qual. Plant. Mat. Veg. (in press).

    Google Scholar 

  242. Payne, PI, CN Law, and EE Mudd (1980a): Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor. Appl. Genet. 58: 113–120.

    CAS  Google Scholar 

  243. Pence, JW, NE Weinstein, and DK Mecham (1954): The albumin and globulin contents of wheat flour and their relationships to protein quality. Cereal Chem. 31: 303–311.

    CAS  Google Scholar 

  244. Pence, JW, NE Weinstein, and DK Mecham (1954): A method for the quantitative determination of albumins and globulins in wheat flour. Cereal Chem. 31: 29–37.

    CAS  Google Scholar 

  245. Peneva, TI, and EF Migushova (1973): The structure of genome (S) (B) in Aegilops of the group Sitopsis according to the data of electrophoretic and immunochemical analysis of gliadins. Tr. Prikl. Bot. Genet. Sel. (USSR) 52: 178–192.

    CAS  Google Scholar 

  246. Percival, J (1921): The Wheat Plant. Duckworth and Co. London.

    Google Scholar 

  247. Petrucci, T, M Tomasi, P Cantagalli, and V Silano (1974): Comparison of wheat albumin inhibitors of alpha-amylase and trypsin. Phytochem. 13: 2487–2495.

    CAS  Google Scholar 

  248. Piazzi, SE, and F Cantagalli (1969): Immunochemical analysis on soluble proteins of wheat. Cereal Chem. 46: 642–646.

    CAS  Google Scholar 

  249. Pomeranz, Y (1971): Composition and functionality of wheat flour components. In: Pomeranz, Y (ed.): 585–674; Am. Ass. Cereal Chem., St. Paul, Minn.

    Google Scholar 

  250. Porceddu, E (1973): Moltiplicazione e valutazione della collezione di frumenti selvatici. In: Laboratorio del Germoplasma, C.N.R., Relazione annuale per il 1972: 31–34.

    Google Scholar 

  251. Porceddu, E (1974): Moltiplicazione e valutazione della collezione dei frumenti. Germoplasma, C.N.R. Relazione annuale per il 1973.

    Google Scholar 

  252. Porceddu, E (1976): Analisi della collezione di frumento duro per il contenuto in proteine. In: Laboratorio del Germoplasma, C.N.R., Relazione annuale per il 1975.

    Google Scholar 

  253. Porceddu, E, G Pacucci, P Perrino, C Della Gatta, and J Maellaro (1975): Protein content and seed characteristics in populations of T. durum grown at three different locations. In: Scarascia Mugnozza, GT (ed.): Genetics and Breeding of Durum-Wheat: 217–224.

    Google Scholar 

  254. Rao, KP, DW Rains, CO Qualset, and RC Huffaker (1977): Nitrogen nutrition and grain protein in two spring wheat genotypes differing in nitrate reductase activity. Crop Sci. 17: 283–286.

    CAS  Google Scholar 

  255. Redman, DG, and M Fisher (1968): Fractionation and comparison of purothionin and globulin components of wheat. J. Sci. Food Agric. 19: 651–655.

    CAS  Google Scholar 

  256. Redman, DG, and JAD Ewart (1973): Characterization of three wheat proteins found in chloroform-methanol extracts of flours. J. Sci. Food Agric. 24: 629–636.

    CAS  Google Scholar 

  257. Resmini, P (1968): Un nuovo metodo per identificare a dosare gli sfarinati di grano tenero presenti in quelli di grano duro e nelle paste alimentari. Tec. Molitoria 19: 145–168.

    Google Scholar 

  258. Rijven, AHGC, and CA Banbury (1960): Role of the grain coat in wheat grain development. Nature (London) 188: 546–547.

    Google Scholar 

  259. Riley, R (1965): Cytogenetics and evolution of wheat. In: Hutchinson, JB (ed.): Essay on Crop Plant Evolution: 103–122; Cambridge.

    Google Scholar 

  260. Riley, R, and V Chapman (1960): The D genome of hexaploid wheat. Wheat Inf. Serv. 11: 18–19.

    Google Scholar 

  261. Riley, R, J Unrau, and V Chapman (1958): Evidence on the origin of the B genome of wheat. J. Hered. 49: 90–98.

    Google Scholar 

  262. Ritenour, GL, KW Joy, JJ Bunning, and RH Hageman (1967): Intracellular localization of nitrate reductase, nitrite reductase and glutamic acid dehydrogenase in green leaf tissue. Plant Physiol. 42: 233–237.

    PubMed  CAS  Google Scholar 

  263. Rodriguez-Loperena, MA, C Aragoncillo, P Carbonero, and F Garcia-Olmedo (1975): Heterogeneity of wheat endosperm proteolipids (CM. proteins). Phytochem. 14: 1219–1223.

    CAS  Google Scholar 

  264. Rybalka, AI, and AA Sozinov (1979): Mapping the locus of Gld 1B, which controls the biosynthesis of reserve proteins in soft wheat. Cytol. Genet. 13: 276–282.

    CAS  Google Scholar 

  265. Sakamura, T (1918): Kurze Mitteilung über die Cromosomenzahlen und die Verwandtschaftsverhältnisse der Triticum Arten. Bot. Mag. (Tokyo) 32: 151–154.

    Google Scholar 

  266. Salcedo, G, MA Rodriguez-Loperena, and C Aragoncillo (1978): Relationships among low MW hydrophobic proteins from wheat endosperm. Phytochem. 17: 1491–1494.

    CAS  Google Scholar 

  267. Sandstedt, RM (1946): Photomicrographic studies of wheat starch. I. Development of the starch granules. Cereal Chem. 23: 337–359.

    CAS  Google Scholar 

  268. Sandstedt, RM, and OC Beckord (1946): Photomicrographic studies of wheat starch. II. Anxiolytic enzymes and the amylase inhibitor of the developing wheat kernel. Cereal Chem. 23: 548–559.

    CAS  Google Scholar 

  269. Sapirstein, HD (1981): Wheat cultivar identification by computer analysis of gliadin electrophoretograms. Thesis, Univ. Manitoba, Winnipeg, Canada.

    Google Scholar 

  270. Sarkar, P, and GL Stebbins (1956): Morphological evidence concerning the origin of the B genome in wheat. Amer. J. Bot. 43: 297–304.

    Google Scholar 

  271. Sax, K (1922): Sterility in wheat hybrids. II. Chromosome behaviour in partially sterile hybrids. Genetics 7: 49–68.

    Google Scholar 

  272. Schmidt, JM (1971): Cytoplasmic male sterility and fertility restoration. Seiken Zihô 22: 113.

    Google Scholar 

  273. Schmidt, JW, PJ Mattern, VA Johnson, and R Morris (1974): Investigations on the genetics of bread wheat baking quality. Genetic Lectures 3: 83–101, Oregon State University Press.

    Google Scholar 

  274. Sears, ER (1948): The cytology and genetics of wheats and their relatives. Adv. Genet. 2: 239–270.

    Google Scholar 

  275. Sears, ER (1969): Wheat cytogenetics. Ann. Rev. Genet. 3: 451–468.

    Google Scholar 

  276. Shands, HL, and G Kimber (1973): Reallocation of the genomes of T.timopheevi Zhuk. Proc. 4th Int. Wheat Genet. Symp. Columbia: 101–108.

    Google Scholar 

  277. Sharma, HC, JG Waines, and KW Foster (1981): Variability in primitive and wild wheats for useful genetic characters. Crop. Sci. 21: 555–559.

    CAS  Google Scholar 

  278. Shellenberger, JA, and AB Ward (1967): Experimental milling. In: Quinsenberry, KS, and LP Reitz (eds.): Wheat and Wheat Improvement: 445–469; Am. Soc. Agron., Mad., Wisconsin.

    Google Scholar 

  279. Shepherd, KW (1968): Chromosomal control of endosperm proteins in wheat and rye. Proc. 3rd Int. Wheat Genet. Symp. Canberra: 86–89.

    Google Scholar 

  280. Shepherd, KW (1973): Homoeology of wheat and alien chromosomes controlling endosperm protein phenotypes. In: Proc. 4th Int. Wheat Genet. Symp. Columbia: 745–760.

    Google Scholar 

  281. Shewry, PR, JC Autran, CC Nimmo, EJL Lew and DD Kasarda (1980): N-terminal amino acid sequence homology of storage protein components from barley and diploid wheat. Nature 286: 520–522.

    CAS  Google Scholar 

  282. Sibley, CG (1960): The electrophoretic patterns of avian egg-white proteins and taxonomic characters. Nature 102: 215–284.

    Google Scholar 

  283. Siddiqui, KA (1972): Protein content and quality of wheat chromosome substitution lines. Hereditas 71: 157–160.

    CAS  Google Scholar 

  284. Silano, V, U De Cillis, F Pocchiari (1969): Varietal differences in albumin and globulin fractions of T.aestivum and of T.durum. J. Sci. Food Agric. 20: 260–261.

    CAS  Google Scholar 

  285. Silano, V, F Pocchiari, and DD Kasarda (1973): Physical characterization of a-amylase inhibitors from wheat. Biochim. Biophys. Acta 317: 139.

    PubMed  CAS  Google Scholar 

  286. Simmonds, DH (1962): Variation in the amino acid composition of Australian wheats and flour. Cereal Chem. 39: 445–455.

    CAS  Google Scholar 

  287. Simmonds, DH (1974): The structure of the developing and mature triticale kernel. In: Tsen, CC (ed.): Triticale: First man-made Cereal: 105–121; AACC, St. Paul, Minn.

    Google Scholar 

  288. Simpson, GG (1945): Principles of classification and classification of mammals. Bull. Amer. Mus. Nat. Hist. 83: 1–350.

    Google Scholar 

  289. Singh, R, and U Axtell (1973): High lysine mutant gene (h1) that improves protein quality and biological value of grain sorgum. Crop Sci. 13: 535–539.

    CAS  Google Scholar 

  290. Smith, DB, and RB Flavell (1974): The relatedness and evolution of repeated nucleotide sequences in the genome of some gramineae species. Biochem. Genet. 12: 243–255.

    PubMed  CAS  Google Scholar 

  291. Solari, RM, and EA Favret (1968): Genetic control of protein constitution in wheat endosperm and its implication on induced mutagenesis. Mutations in Plant Breeding II: 219–231; IAEA Vienna.

    Google Scholar 

  292. Solari, RM, and EA Favret (1970): Chromosome location of genes for protein synthesis in wheat endosperm. Biol. Genet. Inst. Fitotec. Castelar. 7: 23–26.

    Google Scholar 

  293. Sozinov, AA, and FA Poperelya (1979): Polymorphism of prolamines and breeding. J. Agric. Sci. 10: 21–34.

    Google Scholar 

  294. Sozinov, AA, and FA Poperelya (1980): Genetic classification of prolamines and its use for plant breeding. Ann. Technol. Agric. 29: 229–245.

    CAS  Google Scholar 

  295. Sozinov, AA, AF Stelmakh, and AJ Rybalka (1978): Genetic analysis of gliadins in common wheat varieties. Genetika USSR 14: 1955–1967.

    Google Scholar 

  296. Stevens, DJ (1973): Reaction of wheat proteins with sulphite. III. The accessibility of disulphide and thiol groups in flour. J. Sci. Food Agric. 17: 202–204.

    Google Scholar 

  297. Stuber, CE, VA Johnson, and JW Schmidt (1962): Grain protein content and its relationship to other plant and seed characteristics in the parents and progeny of a cross of T. aestivum L. Crop Sci. 2: 506–508.

    CAS  Google Scholar 

  298. Suemoto, H (1968): The origin of the cytoplasm of tetraploid wheat. Proc. 3rd Int. Wheat Genet. Symp. Canberra: 141–152.

    Google Scholar 

  299. Suemoto, H (1973): The origin of the cytoplasm of tetraploid wheats. Proc. 4th Int. Wheat Genet. Symp. Columbia: 141–152.

    Google Scholar 

  300. Sunderman, DW, M Wise, and EM Sneed (1965): Interrelationships of wheat proteins content, flour sedimentation value, farinograph peak time and dough mixing and baking characteristics in the F2 and F3 generations of winter wheat, T.aestivum L., Crop Sci. 5: 537–540.

    Google Scholar 

  301. Tandon, JP (1967): Inheritance of protein content in an intervarietal cross of wheat. J. Res. PAU. Ludhiana 4: 348–352.

    Google Scholar 

  302. Taylor, NW, and JE Cluskey (1962): Wheat gluten and its glutenin component: viscosity, diffusion and sedimentation studies. Arch. Biochem. Biophys. 97: 399–405.

    PubMed  CAS  Google Scholar 

  303. Thakur, SK, and GS Sethi (1977): Genetic analysis of protein content in wheat. In: Gupta, AK (ed.): Genetics and Wheat Improvement: Oxford and IBN Publ. Co., New Delhi.

    Google Scholar 

  304. Thompson, WF, and MG Murray (1980): Sequence organization in pea and mung bean DNA and a model for genome evolution. Proc. 4th John Innes Symp. Norwich: 31–45.

    Google Scholar 

  305. Tumanyan, NT (1938): A new species of wild wheat. Tr. Arm. Fil. Akad. Nauk. USSR 2.

    Google Scholar 

  306. Ulmer, RL, and PJ Mattern (1972): The composition of flour protein from wheat cultivars differing in genetic ability to produce protein. Agron. Abstr. Amer. Soc. Agron: 71.

    Google Scholar 

  307. Upcroft, JA, and J Done (1974): Starch gel electrophoresis of plant NADH-nitrate reductase and nitrite reductase. J. Exper. Bot. 25: 503–508.

    CAS  Google Scholar 

  308. Vanecko, S, and JE Varner (1955): Studies on nitrite metabolism in higher plants. Plant Physiol. 30: 388–391.

    PubMed  CAS  Google Scholar 

  309. Vardi, A (1973): Introgression between different ploidy levels in the wheat group. In: Proc. 4th Int. Wheat Genet. Symp. Columbia: 131–141.

    Google Scholar 

  310. Villegas, E, CE McDonald, and KA Giles (1970): Variability in the lysine content of wheat, rye and triticale protein. Cereal Chem. 47: 746–757.

    CAS  Google Scholar 

  311. Vogel, KP, VA Johnson, and PJ Mattern (1973): Results of systematic analysis for protein and lysine composition of common wheats (T. aestivum L.) in the USDA world collection. Agr. Exp. Stn. Univ. Nebraska, College of Agriculture, Res. Bull: 258–271.

    Google Scholar 

  312. Vogel, KP, VA Johnson, and PJ Mattern (1975): Re-evaluation of common wheats from the USDA world wheal collection for protein and lysine content. Nebraska Res. Bull. 272: 36.

    Google Scholar 

  313. Waines, JG (1976): Electrophoretic-systematic studies in Aegilops. Thesis Univ. California, Riverside.

    Google Scholar 

  314. Waines, JG (1973): Chromosomal location of genes controlling endosperm protein production in Triticum aestivum cv. Chinese spring. Proc. 4th Int. Wheat Genet. Symp., Columbia: 873–877.

    Google Scholar 

  315. Warner, RL, and CF Konzak (1975): Nitrate reductase activity in wheat substitution lines. Wheat Newsl. 21: 160–161.

    Google Scholar 

  316. Wasik, RJ, and W Bushuk (1975): Relation between molecular weight distribution of endosperm proteins and spaghetti-making quality of wheats. Cereal Chem. 52: 322–328.

    CAS  Google Scholar 

  317. Watson, CA, and JR Welsh (1966): Monosomics. Cereal Sci. Today 11: 286–290.

    Google Scholar 

  318. Weber, K, and M Osborn (1969): The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244: 4406–4412.

    PubMed  CAS  Google Scholar 

  319. Wells, DG, and CR Cowley (1976): Registration of SD69103, Hand and Flex winter wheat germplasm. Crop Sci. 16: 888.

    Google Scholar 

  320. Welsh, JR, and ER Hehn (1964): The effect of chromosome ID on hexaploid wheat flour quality. Crop Sci. 4: 320–323.

    Google Scholar 

  321. Wildman, SG, K Chen, JC Gray, SD Kung, P Kwanyeun, and K Sakano (1975): Evolution of ferredoxin and fraction I protein in the genus Nicotiana. In: Birky, CW jr, PS Perlman, and JT Byers (eds.): Genetics and Biogenesis of Mitochondria and Chloroplasts: 310–329; Ohio State Univ. Press, Columbus.

    Google Scholar 

  322. Woods, KR, EC Paulsen, RL Engle, and JH Pert (1958): Starch gel electrophoresis of some invertebrate sera. Science 127: 519–520.

    PubMed  CAS  Google Scholar 

  323. Worede, M (1974): Genetic improvement of quality and agronomic characteristics of durum wheat for Ethiopia. Thesis, Univ. Nebraska, Lincoln.

    Google Scholar 

  324. Worzella, WW (1942): Inheritance and inter-relationship of the components of quality, cold resistance and morphological characters in wheat hybrids. J. Agric. Res. 65: 501–522.

    CAS  Google Scholar 

  325. Woychik, JH, JA Boundy, and RJ Dimler (1961): Starch gel electrophoresis of wheat gluten proteins with concentrated urea. Arch. Biochem. Biophys. 94: 477–482.

    PubMed  CAS  Google Scholar 

  326. Wrigley, CW (1970): Protein mapping by combined gel electrofocusing and electrophoresis. Application to the study of genotypic variations in wheat gliadins. Biochem. Gen. 4: 509–516.

    CAS  Google Scholar 

  327. Wrigley, CW (1977): Characterization and analysis of cereal products in foods by protein electrophoresis. Food Technol. Aust. 29: 17–20.

    Google Scholar 

  328. Wrigley, CW, JL Autran, and KW Bushuk (1982): Identification of cereal varieties by gel electrophoresis of the grain proteins. (In press).

    Google Scholar 

  329. Wrigley, CW, PJ Robinson, and WT Williams (1981): Association between electrophoretic patterns of gliadin proteins and quality characteristics of wheat cultivars. J. Sci. Food Agric. 32: 433–442.

    CAS  Google Scholar 

  330. Wrigley, CW, and KW Shepherd (1973): Electrofocusing of grain proteins from wheat genotypes. Ann. N. Y. Acad. Sci. 209: 154–162.

    PubMed  CAS  Google Scholar 

  331. Wrigley, CW, and KW Shepherd (1974): Identification of Australian wheat cultivars by laboratory procedures: Examination of pure samples of grain. Aust. J. Exp. Agr. Anim. Husb. 14: 796–804.

    Google Scholar 

  332. Wrigley, CW, and KW Shepherd (1977): Pedigree investigation using biochemical markers: the wheat cultivar Gabo. Aust. J. Exp. Agric. Anim. Husb. 17: 1028–1031.

    Google Scholar 

  333. Yampolsky, C (1957): Wheat. Wallerstein Lab. Commun. 20: 343–358.

    Google Scholar 

  334. Yeas, M (1972): De Novo origin of periodic proteins. J. Mol. Evol. 2: 17–21.

    Google Scholar 

  335. Zhukovsky, PM (1964): Cultured Plants and their Relatives (in Russian). Leningrad.

    Google Scholar 

  336. Zillman, RR, and W Bushuk (1979): Wheat cultivar identification by gliadin electrophoretograms. III. Catalogue of electrophoregram formulas of Canadian wheat cultivars. Canad. J. Plant Sci. 59: 287–298.

    CAS  Google Scholar 

  337. Zohari, D, and M Feldman (1962): Hybridisation between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution 16: 44–61.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff/Dr W. Junk Publishers, The Hague

About this chapter

Cite this chapter

Porceddu, E., Lafiandra, D., Scarascia-Mugnozza, G.T. (1983). Genetics of Seed Proteins in Wheat. In: Gottschalk, W., Müller, H.P. (eds) Seed Proteins. Advances in Agricultural Biotechnology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6801-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6801-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6803-5

  • Online ISBN: 978-94-009-6801-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics