Skip to main content

Comparative Study on the Incorporation of Composite Material for Tyre Computation

  • Chapter
Composite Structures 2

Abstract

Three-dimensional linear elastic orthotropic finite elements were used for the approximation of reinforced tyre materials. Various authors have expressed analytically the elastic constants. In order to decide which of the different methods to find realistic constants can be recommended, three-dimensional FEM computations have been compared to experimentally obtained results of tension tests. It was found that all the different methods lead to equivalent results.

Finally it is shown that the applied three-dimensional element is best suited to investigate all the effects of tyres due to reinforcement.

The work reported in this paper has been supported by the West German Minister of Research and Technology. Experiments were carried out by Continental Gummi Werke AG, Hannover, West Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

E F, E M :

Youg’s moduli of fibre/matrix

v F, v M :

Poisson’s ratio of fibre/matrix

References

  1. Rhida, R. A., Analysis for tire mold design, Tire Sci. Technol., 3 (1974), 195–210.

    Google Scholar 

  2. Deeskinazi, J., Soedel, W. and Yang, T. Y., Contact of an inflated toroidal membrane with a flat surface as an approach to the tire deflection problem, Tire Sci. Technol., 3 (1975), 43–61.

    Article  Google Scholar 

  3. Deeskinazi, J., Yang., T. Y. and Soedel, W, Displacements and stresses resulting from contact of a steel belted radial tire with a flat surface, Tire Sci. Technol., 6 (1978).

    Google Scholar 

  4. Kennedy, R. H., Patel, H. P. and Mcminn, M. S., Radial truck tire inflation analysis: theory and experiment, Rubber Chem. Technol., 54 (1981), 751–766.

    Article  CAS  Google Scholar 

  5. Ridha, R. A., Computation of stresses, strains and deformation of tires, Rubber Chem. Technol., 53 (1980), 849–902.

    Article  CAS  Google Scholar 

  6. Walter, J. D. and Patel, H. P., Approximate expressions for the elastic constants of cord-rubber laminates, Rubber Chem. Technol., 52 (1979), 710–724.

    Article  CAS  Google Scholar 

  7. Jones, R. M., Mechanics of Composite Materials, London, McGraw-Hill (1975).

    Google Scholar 

  8. Puck, A., Zur Beanspruchung und Verformung Mehrschichtiger Verbundstoff-Bauelemente aus Glasseidensträngen und Kunststoff, Dissertation TH Darmstadt (1967).

    Google Scholar 

  9. Förster, R. and Knappe, W., Experimentelle und theoretische Untersuchungen zur Rißbildungsgrenze an zweischichtigen Wickelrohren aus Glasfaser/Kunststoff unter Innendruck, Kunststoffe, 6 (1971), 583–588.

    Google Scholar 

  10. Whitney-Riley, Analysis of Structure Composite Materials,New York (1973).

    Google Scholar 

  11. Bathe, K. J., Static and Dynamic Geometric and Material Nonlinear Analysis Using ADINA,Report 82339–2, Aeronautics and Vibration Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology.

    Google Scholar 

  12. Bathe, K. J., Finite Element Procedures in Engineering Analysis, Prentice Hall, Englewood Cliffs, New Jersey (1982).

    Google Scholar 

  13. Durand, M. and Jankovich, E., Nonapplicability of Linear Finite Element Programs to the Stress Analysis of Tires, 2nd NASTRAN User’s Colloquium, NASA Langley Research Center, NASA TMX-2637 (1972).

    Google Scholar 

  14. Kaga, H., Okamoto, K. and Tozawa, Y., Stress analysis of a tire under vertical load by a finite element method, Tire Sci. Technol., 5 (1977), 102–118.

    Article  Google Scholar 

  15. Patel, H. P. and Kennedy, R. H., Nonlinear finite element analysis for composite structures of axisymmetric geometry and loading, Computers & Structures, 15 (1982), 79–84.

    Article  Google Scholar 

  16. Turner, J. L. and Ford, J. L., interply behaviour exhibited in compliant filamentary composite laminates, Rubber Chem. Technol., 55 (1982), 1078–1094.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Rothert, H., Nguyen, B., Gall, R. (1983). Comparative Study on the Incorporation of Composite Material for Tyre Computation. In: Marshall, I.H. (eds) Composite Structures 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6640-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6640-6_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6642-0

  • Online ISBN: 978-94-009-6640-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics