Skip to main content

Biaxial Failure of GRP—Mechanisms, Modes and Theories

  • Chapter
Composite Structures 2

Abstract

Numerous failure theories have been proposed for GRP. Experimental observations under biaxial loading reveal scatter, multiple failure mechanisms and failure modes, which depend on material type and stress conditions. Biaxial failure theories can be represented as surfaces whose shape depend on both failure theory and the choice of single valued characteristic strengths. Experimental results suggest surfaces which are quadratic functions of the stresses and strengths and which often lie well inside the maximum normal stress boundaries. Failure theories which use a complex stress test to evaluate an interaction coefficient are generally unacceptable because the resulting surfaces are so sensitive to small changes in strength data. It is necessary to consider different classes of reinforcement (unidirectional, woven fabric, and random mat) separately in proposing failure theories. For unidirectional materials quadratic theories only appear to be well defined under tension-tension-shear conditions. For mats and fabrics adaptations of the early Norris theories fitted separately in each stress octant appear to be satisfactory. Failure theories only predict material failure as distinct from structural failure and should be treated with caution when applied to design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsai, S. W. and Hahn, H. T., Introduction to Composite Materials, Westport CT, Technomic Publishing Co., 1980.

    Google Scholar 

  2. Owen, M. J. and Bishop, P. T., The significance of microdamage in glass reinforced plastics at macroscopic stress concentrators, J. Phys. (D): appl. Phys., 5 (1972), 1621–1636.

    CAS  Google Scholar 

  3. Found, M. S., Biaxial Stress Fatigue of Glass Reinforced Plastics, Ph.D. Thesis, University of Nottingham, May 1972.

    Google Scholar 

  4. Griffiths, J. R., Fatigue of Glass Reinforced Plastics under Complex Stresses, Ph.D. Thesis, University of Nottingham, Oct. 1974.

    Google Scholar 

  5. Rice, D. J., Fatigue and Failure Mechanisms in Glass Reinforced Plastics under Complex Stresses, Ph.D. Thesis, University of Nottingham, May 1981.

    Google Scholar 

  6. Smith, E. W., Cyclic Biaxial Deformation and Failure of a Glass fibre Reinforced Composite, Ph.D. Thesis, Cambridge University, Dec. 1976.

    Google Scholar 

  7. Owen, M. J. and Rice, D. J., Biaxial strength behavior of glass-reinforced polyester resins, in: Composite Materials: Testing and Design (Daniel, I. M., ed.) (6th Conference), ASTM STP 787, American Society for Testing and Materials, 1982, pp. 124–144.

    Google Scholar 

  8. Stowell, E. Z. and Liu, T. S., On the mechanical behaviour of fibre reinforced crystalline materials, J. Mech. Phys. Solids, 9 (1961), 242.

    Article  Google Scholar 

  9. Azzi, V. D. and Tsai, S. W., Anisotropic strength of composites, Exp. Mech., 5 (1965), 283–288.

    Article  Google Scholar 

  10. Norris, C. B. and Mckinnon, P. F., Compression, tension and shear tests on yellow-poplar plywood panels of sizes that do not buckle with tests made at various angles to the face grain, U.S. Forest Products Laboratory Report, No. 1328, 1946.

    Google Scholar 

  11. Norris, C. B., Strength of orthotropic materials subjected to combined stresses, U.S. Forest Products Laboratory Report, No. 1816, 1951.

    Google Scholar 

  12. Franklin, H. G., Classic theories of failure of anisotropic materials, Fibre Sci. Tech., 1 (1969), 137–150.

    Article  Google Scholar 

  13. Tsai, S. W. and Wu, E. M., A general theory of strength for anisotropic materials, J. Comp. Mater., 5 (1971), 58–80.

    Article  Google Scholar 

  14. Guyett, R. P. and Cardrick, A. W., The certification of composite airframe structures, Aeronaut. J. (1980), 188–203.

    Google Scholar 

  15. Hashin, Z. and Rotem, A., A fatigue failure criterion for fiber reinforced materials, J. Comp. Mater., 7 (1973), 448–464.

    Article  Google Scholar 

  16. Rotem, A. and Hashin, Z., Failure modes of angle ply laminates, J. Comp. Mater., 9 (1975), 191–206.

    Article  Google Scholar 

  17. Rotem, A. and Hashin, Z., Fatigue failure of angle ply laminates, AIAA J., 14 (1976), 868–872.

    Article  Google Scholar 

  18. Rotem, A., Fatigue failure of multidirectional laminate, AIAA J., 17 (1979), 271–277.

    Article  Google Scholar 

  19. Puck, A. and Schneider, W., On failure mechanisms and failure criteria of filament wound glass-fibre/resin composites, Plastics Polym., Feb. (1969), 33–44.

    Google Scholar 

  20. Hashin, Z., Fatigue failure criteria for unidirectional fiber composites, Trans ASME, J. appl. Mech., 48 (1981), 846–852.

    Article  Google Scholar 

  21. Sims, D. F. and Brogdon, V. H., Fatigue behavior of composites under different loading modes, in: Fatigue of Filamentary Composite Materials (Reifsnider, K. L. and Lauraitis, K. N., eds), ASTM STP 636, American Society for Testing and Materials, 1977, pp. 185–205.

    Google Scholar 

  22. Owen, M. J. and Griffiths, J. R., Internal reinforcement joints in grp under static and fatigue loading, Composites, April (1979), 89–94.

    Google Scholar 

  23. Owen, M. J. and Griffiths, J. R., Evaluation of biaxial stress fatigue failure surfaces for a glass reinforced polyester resin under static and fatigue loading, J. Mater. Sci., 13 (1978), 1521–1537.

    Article  CAS  Google Scholar 

  24. Owen, M. J. and Found, M. S., The fatigue behaviour of a glass fabric reinforced polyester resin under off-axis loading, J. Phys. D.: appl. Phys., 8 (1975), 480–497.

    Article  CAS  Google Scholar 

  25. Owen, M. J. and Found, M. S., Static and fatigue failure of glass fibre reinforced polyester resins under complex stress conditions, Faraday Special Discussions of the Chemical Society, No. 2 (1972), 77–89.

    Article  CAS  Google Scholar 

  26. Owen, M. J., Griffiths, J. R. and Found, M. S., Biaxial stress fatigue testing of thin-walled GRP cylinders, in: Proc. 1975 Int. Conf. Composite Materials (Scala, E., Anderson, E., Toth, I. and Noton, B. R., eds), Vol. 2, New York, Metallurgical Society of the AIME, 1976, pp. 917–941.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Owen, M.J. (1983). Biaxial Failure of GRP—Mechanisms, Modes and Theories. In: Marshall, I.H. (eds) Composite Structures 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6640-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6640-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6642-0

  • Online ISBN: 978-94-009-6640-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics