Skip to main content

Abstract

Laser anemometry is used for the precise measurement of the movement of matter in its various states, solid, liquid and gas. It is therefore of interest to many people and has become widely practised.1 Velocity, turbulence intensity, shear stress in fluids and many other quantities may be measured, yet in no way disturbing the motion of interest or having to employ calibration, as with mechanical probe techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbiss, J. B., Chubb, T. W. and Pike, E. R. Opt. Laser Technol., 6 (1974), 249–61.

    Article  Google Scholar 

  2. Cummins, H. Z. and Pike, E. R. Photon Correlation and Light Beating Spectroscopy, 1974, Plenum Press, New York.

    Google Scholar 

  3. Photon correlation techniques in fluid mechanics. Physica Scripta, 19(3) (1979).

    Google Scholar 

  4. Durst, F., Meiling, A. and Whitelaw, J. H. Principles and Practise of Laser-Doppler Anemometry, 1976, Academic Press, London.

    Google Scholar 

  5. Foord, R. et al. J. Phys. D., 7 (1974), L36-L39.

    Article  Google Scholar 

  6. Abbiss, J. B. and Mayo, W. T. Applied Optics, 20 (1981), 588–90.

    Article  CAS  Google Scholar 

  7. Cummins, H. Z. and Pike, E. R. Photon Correlation Spectroscopy and Velocimetry, 1977, Plenum Press, New York.

    Google Scholar 

  8. Sonnenschein, C. M. and Horrigan, F. A. Appi. Optics, 10 (1971), 1600–4.

    Article  CAS  Google Scholar 

  9. OShaughnessy, J. and Pomeroy, W. R. M. Opt. Quant. Electr., 10 (1978), 270–2.

    Article  Google Scholar 

  10. McLaughlin, D. K. and Tiederman, W. G. Phys. Fluids, 16 (1973), 2082.

    Article  Google Scholar 

  11. Steenstrup, F. V. Disa Inf 18 (1975), 21–5

    Google Scholar 

  12. Buchabe, P., George, W. K. and Lumley, J. L. Ann. Rev. Fluid Mech 11 (1979), 443–503.

    Article  Google Scholar 

  13. Jackson, D. A. and Eggins, P. L., AGARD-CP-193 1976.

    Google Scholar 

  14. Deighton, M. O. and Sayle, E. A. Disa Inf 12 (1971), 5–10.

    Google Scholar 

  15. Alldritt, M., Jones, R., Oliver, C. J. and Vaughan, J. M. J. Phys. E 11 (1978), 116–19.

    Article  Google Scholar 

  16. Birch, A. D. and Dodson, M. G. Optica Acta 27(1) (1980).

    Article  Google Scholar 

  17. Brown, R. G. W. and Gill, M. E. Proc. ECOSA 82 SPIE Vol. 369, paper 15, 1983

    Google Scholar 

  18. Schultz Du Bois, E. O. (Ed.). Photon Correlation Techniques in Fluid Mechanics 1983, Springer-Verlag, Berlin.

    Google Scholar 

  19. Brown, R. G. W. et al. Physica Scripta 19 (1979), 365–8.

    Article  CAS  Google Scholar 

  20. Tanner, L. T. and Thompson, D. H. Proc. Symp. on Instrumentation and Data Processing for Industrial Aerodynamics, 1968, National Physical Laboratory. London.

    Google Scholar 

  21. Schodl, R. Thesis DLR-FB 77–6, DFVLR Köln, 1977.

    Google Scholar 

  22. Schodl, R. Trans. ASME, J. Fluid Eng 102 (1980), 412.

    Article  Google Scholar 

  23. Ross, M. M. Optica Acta 27(4) (1980), 511–28.

    Article  Google Scholar 

  24. Brown, R. G. W and Pike, E. R. Opt. Laser Technol., 10 (1978), 317–19.

    Article  Google Scholar 

  25. Mayo, W. T. Optica Acta 27(1) (1980), 53–66

    Article  Google Scholar 

  26. Greated, C. In: The Engineering Uses of Coherent Optics, ed. E. R. Robertson, 1976, Cambridge University Press, Cambridge.

    Google Scholar 

  27. Pusey, P. N. J. Phys. D 9 (1976), 1399–409.

    Article  Google Scholar 

  28. Glass, M. and Kennedy, I. M. Combust, and Flame, 29 (1977), 333–5.

    Article  CAS  Google Scholar 

  29. Jackson, D. A. and Bedborough, D. S. J. Phys. D 11 (1978), L135-L137.

    Article  Google Scholar 

  30. Proc. 2nd Int. Workshop on Laser Velocimetry, 1974, Purdue University.

    Google Scholar 

  31. Laser optical measurement methods for aero engine research and development. AGARD-LS-90, 1977

    Google Scholar 

  32. Applications of non-intrusive instrumentation in fluid flow research. A GARD-CP-193 1976.

    Google Scholar 

  33. Durst, F. and Zare, M. Bibliography of laser Doppler anemometry literature. Disa Inf 1974.

    Google Scholar 

  34. The accuracy of flow measurement by laser Doppler methods. Proc. LDA Symposium 1975, Copenhagen

    Google Scholar 

  35. Proc. 4th Int. Conf. on Photon Correlation Techniques in Fluid Mechanics, 1980, Stanford University.

    Google Scholar 

  36. Munoz, R. M., Mocker, H. W. and Koehler, L. Appl. Optics 13 (1974), 2890–8.

    Article  Google Scholar 

  37. Foord, R., Jones, R., Pomeroy, W. R. M., Vaughan, J. M. and Willetts, D. V. Proc. SPIE 1979.

    Google Scholar 

  38. Brown, A., Thomas, E. I., Foord, R. and Vaughan, J. M. J. Phys. D 11 (1978), 137–45.

    Article  Google Scholar 

  39. Smart, A. E. and Moore, C. J. A1AA Journal 14 (1976), 363–70.

    Google Scholar 

  40. Kugler, H. P. AGARD-LS-90 1976; Physica Scripta 19(3) (1979).

    Article  Google Scholar 

  41. Birch, A. D., Brown, D. R., Dodson, M. G. and Thomas, J.R. J. Phys. D 8 (1975), L167-L170.

    Article  Google Scholar 

  42. Cole, J. B. and Swords, M. D. Applied Optics 18(10) (1980), 1539–45.

    Article  Google Scholar 

  43. Botcherby, S. C. L. and Bartley-Denniss, G. A. Proc. Inst. Mech. Engrs, 183 (1968–69), Pt 3D, 25–8.

    Google Scholar 

  44. Pike, E. R. In:The Engineering Uses of Coherent Optics, ed. E.R. Robertson, 1976, Cambridge University Press, Cambridge

    Google Scholar 

  45. Stachnik, W. J. and Mayo, W. T. Proc. Oceans77, 1977, 18A/1–5

    Google Scholar 

  46. Greated, C., Durrani, T. S. and Ludlow, M. F. Proc. Electro-Optics International, 1974.

    Google Scholar 

  47. Simpson, D. G. and Lamb, D. G. S. Nat. Eng. Lab. (UK) Report NEL-639

    Google Scholar 

  48. Hill, D. W., Young, S., Parker, P. and Pike, E. R. IEEE J. Quant. Electr QE-13(9) (1977).

    Google Scholar 

  49. Langdon, P. High Speed Diesel Report, 1(5) (1982), 20–4.

    Google Scholar 

  50. Proc. Int. Symp. on Applications of LDA to Fluid Mechanics, 1982, Lisbon.

    Google Scholar 

References

  1. Kogelnik, H. Bell Systems Tech. J., 44 (1965), 455–94.

    Google Scholar 

  2. Dickson, L. D. Appl. Optics, 9 (1970), 1854–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Brown, R.G.W., Pike, E.R. (1983). Laser Anemometry. In: Luxmoore, A.R. (eds) Optical Transducers and Techniques in Engineering Measurement. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6637-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6637-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6639-0

  • Online ISBN: 978-94-009-6637-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics