Advertisement

Length and Displacement Measurement by Laser Interferometry

  • S. J. Bennett

Abstract

The first measurements of length by interferometry were made by Michelson and Benoit at the end of the 19th century.1 The primary metric standard of length at that time was the International Prototype Metre, a bar of platinum-iridium alloy inscribed with two fine lines 1 m apart. Michelson and his colleague measured the separation of this pair of lines in terms of the wavelength of the red line from a cadmium lamp at 644 nm. These measurements were repeated in 1905 by Benoit et al.2 who achieved a result with an uncertainty of about 1 part in 107.

Keywords

Interference Fringe Displacement Measurement Path Difference Automatic Gain Control Laser Interferometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Michelson, A. A. and Benoit, J. R. Trav. et Mem. BIPM, 11 (1895), 1–237.Google Scholar
  2. 2.
    Benoit, J. R., Fabry, C. and Perot, A. Trav. et Mem. BIPM, 15(1913), 1–134.Google Scholar
  3. 3.
    Barrell, H. Proc. Roy. Soc., A186 (1946), 164–70.Google Scholar
  4. 4.
    ComptesRendus. llème Conf. Gen. Poids et Mesures, 1960, Gauthiers-Villars, Paris.Google Scholar
  5. 5.
    Javan, A., Bennett, W. R. and Herroitt, D. R. Phys. Rev. Lett., 6 (1961), 106–10.CrossRefGoogle Scholar
  6. 6.
    White, A. D. and Ridgen, J. D. Proc. IRE, 50 (1962), 1697.CrossRefGoogle Scholar
  7. 7.
    Bloom, A. L. Appi. Phys. Lett., 2 (1963), 101–2.CrossRefGoogle Scholar
  8. 8.
    McFarlane, R. A., Bennett, W. R. and Lamb, W. E. Appi. Phys. Lett., 2(1963), 189–90.CrossRefGoogle Scholar
  9. 9.
    Zory, P. IEEE J. Quant. Elect., QE-3 (1967), 390–8.CrossRefGoogle Scholar
  10. 10.
    Goldsborough, J. P. Appi. Phys. Lett., 15 (1969), 159–61.CrossRefGoogle Scholar
  11. 11.
    Ballik, E. A. Phys. Lett., 4 (1963), 173–6.CrossRefGoogle Scholar
  12. 12.
    Rowley, W. R. C. and Wilson, D. C. Nature, 200(1963).Google Scholar
  13. 13.
    Baird, K. M., Smith, D. S., Hanes, G. R. and Tsunekane, S. Appi. Opt 4 (1965), 569–71.Google Scholar
  14. 14.
    White, A. D. IEEE J. Quant. Elect., QE-1 (1965), 349–57.CrossRefGoogle Scholar
  15. 15.
    Mielènz, K. D, Nefflen, K. F., Rowley, W. R. C., Wilson, D. C. and Engelhard, E. Appi. Opt., 7 (1968), 289–93.CrossRefGoogle Scholar
  16. 16.
    Hanes, G. R. and Dahlstrom, C. E. Appi. Lett., 14 (1969), 362–4.CrossRefGoogle Scholar
  17. 17.
    Wallard, A. J. J. Phys. E., 6 (1973), 793–807.CrossRefGoogle Scholar
  18. 18.
    Skolnick, M. L., Polanyi, T. G. and Tobias, I. Phys. Lett., 19 (1965), 386 7Google Scholar
  19. 19.
    Ferguson, J. B. and Morris, R. H. Appi. Opt., 17 (1978), 2924–9.CrossRefGoogle Scholar
  20. 20.
    Balhorn, R., Kunzmann, H. and Lebowsky, F. Appi. Opt., 11 (1972), 742 4Google Scholar
  21. 21.
    Bennett, S. J., Ward, R. E. and Wilson, D. C. Appi. Opt., 12 (1973), 1406.Google Scholar
  22. 22.
    Rowley, W. R. C. and Wilson, D. C. Proc. Inst. Mech. Eng., 183, part 3D (1969), 29–33.Google Scholar
  23. 23.
    Rowley, W. R. C. Alta Frequenza, 41 (1972), 887–96.Google Scholar
  24. 24.
    Peck, E. R. J. Opt. Soc. Am., 47 (1957), 250–2.CrossRefGoogle Scholar
  25. 25.
    Terrien, J. Revue d’Optique, 38 (1959), 29–37.Google Scholar
  26. 26.
    Peck, E. R. and Obetz, S. W. J. Opt. Soc. Am., 43 (1953), 505–9.CrossRefGoogle Scholar
  27. 27.
    Raine, K. W. and Downs, M. J. Optica Acta, 25(1978), 549–58.CrossRefGoogle Scholar
  28. 28.
    Boyd, G. D. and Gordon, J. P. Bell Syst. Tech. J., 40 (1961), 489–508.Google Scholar
  29. 29.
    Boyd, G. D. and Kogelnik, H. Bell Syst. Tech. J., 41 (1962), 1347–69.Google Scholar
  30. 30.
    Kogelnik, H. and Li, T. Appi. Opt., 5 (1966), 1550–67.CrossRefGoogle Scholar
  31. 31.
    Heavens, O. Optical Properties of Thin Films, 1955, Butterworths, London.Google Scholar
  32. 32.
    Banning, M. J. Opt. Soc. Am., 37 (1947), 792–7.CrossRefGoogle Scholar
  33. 33.
    Bennett, S. J. Opt. Comm., 4 (1972), 428–30.CrossRefGoogle Scholar
  34. 34.
    Bennett, S. J. J. Phys. E., 10 (1977), 525–30.CrossRefGoogle Scholar
  35. 35.
    Dukes, J. N. and Gordon, G. B. Hewlett Packard J., 21(12) (1970), 2–8.Google Scholar
  36. 36.
    Downs, M. J. and Raine, K. W. Precision Eng., 1 (1979), 85–8.CrossRefGoogle Scholar
  37. 37.
    Edlen, B. Metrologia, 2 (1966), 71–80.CrossRefGoogle Scholar
  38. 38.
    Koning, J. and Schellekens, P. H. J. Annals ofCIRP, 19 (1971), 255–8.Google Scholar
  39. 39.
    Giacomo, P., Hamon, J. Hostache, J. and Carre, P. Metrologia, 8 (1972), 72–82.CrossRefGoogle Scholar
  40. 40.
    Lenkova, G. A., Lokhmatov, A. I., Gurin, E. I., Koronkevich, V. P., Kolesova, E. B. and Tarasov, G.G. Meas. Tech., 14(1971), 1822–5.CrossRefGoogle Scholar
  41. 41.
    Rowley, W. R. C. and Stanley, V. W. Machine Shop., 26 (1965), 430–2.Google Scholar
  42. 42.
    Bennett, S. J. Survey Review, 22 (1974), 270–5.Google Scholar
  43. 43.
    Clark, J. S. The Engineer, 189 (1950), 201–3.Google Scholar
  44. 44.
    Clark, J. S. The Engineer, 189 (1950), 228–30.Google Scholar
  45. 45.
    Johnson, L. O. C. The Engineer, 203 (1957), 632–4.Google Scholar
  46. 46.
    Bennett, S. J. and Rowley, W. R. C. J. Phys. E., 6 (1973), 963–4.CrossRefGoogle Scholar
  47. 47.
    Levine, J. and Hall, J. L. Geophys. Res., 77 (1972), 2595–609.CrossRefGoogle Scholar
  48. 48.
    Goulty, N. R., King, G. C. P. and Wallard, A. J. Geophys. J. Roy. Astr. Soc., 39 (1974), 269–82.Google Scholar
  49. 49.
    Hammond, J. A. and Faller, J. E. IEEE J. Quant. Elect., QE-3(1967), 597–602.CrossRefGoogle Scholar
  50. 50.
    Sakuma, A. Special Publication 343, 1971, US National Bureau of Standards, Boulder, Colorado, pp. 447–56.Google Scholar
  51. 51.
    Tilford, C. R. Rev. Sci. Instrum., 44 (1973), 180–2.CrossRefGoogle Scholar
  52. 52.
    Bennett, S. J., Clapham, P. B., Daborn, J. E. and Simpson, D. I. J. Phys. E., 8 (1975), 5–7.CrossRefGoogle Scholar
  53. 53.
    Jacobs, S. F. and Small, J. G. Appl. Opt., 20 (1981), 3508–13.CrossRefGoogle Scholar
  54. 54.
    Benoit, J. R. J. Phys., 7(3) (1898), 57.Google Scholar
  55. 55.
    Poole, S. P. and Dowell, J. H. Application of interferometry to the routine measurement of block gauges. In: Optics in Metrology, ed. P. Mollet, 1960, Pergamon Press, Oxford, pp. 405–19.Google Scholar
  56. 56.
    Bourdet, G. L. and Orszag, A. G. Appl. Opt., 18 (1979), 225–30.CrossRefGoogle Scholar
  57. 57.
    Bien, F., Camac, M., Caulfield, H. J. and Ezekiel, S. Appl. Opt., 20 (1981), 400–3.CrossRefGoogle Scholar
  58. 58.
    Matsumoto, H. Appl. Opt., 20 (1981), 231–4.CrossRefGoogle Scholar
  59. 59.
    Pugh, D. J. and Jackson, K. Proceedings of Nelex Metrology Conference, 1982, National Engineering Laboratory.Google Scholar
  60. 60.
    Funnell, W. R. J. Appl. Opt., 20 (1981), 3245–50.CrossRefGoogle Scholar
  61. 61.
    Robinson, D. W. Proc. SPIE, 376 (1983), to be published.Google Scholar
  62. 62.
    Massie, N. A. Heterodyne Interferometry in Optical Interferograms— Reduction and Interpretation, ASTM STP 666, eds. A. H. Guenther and D. H. Liebenberg, 1978, ASTM, Philadelphia.Google Scholar
  63. 63.
    Massie, N. A., Nelson, R. D. and Holly, S., Appl. Opt., 18 (1979), 1797–803.CrossRefGoogle Scholar
  64. 64.
    Massie, N. A. Appl. Opt., 19 (1980), 154–60.CrossRefGoogle Scholar
  65. 65.
    Hoffer, T. M. Hewlett Packard Application Note 156–4, pp. 27–32.Google Scholar
  66. 66.
    Koch, J. K. Proc. SPIE: Developments in Semiconductor Microlithography, 80 (1976), 112–20.Google Scholar

Copyright information

© Applied Science Publishers Ltd 1983

Authors and Affiliations

  • S. J. Bennett
    • 1
  1. 1.National Physical LaboratoryTeddingtonUK

Personalised recommendations