Skip to main content

Multiplicity of kappa opiate sites in the central nervous system

  • Chapter
Veterinary Pharmacology and Toxicology

Abstract

The pharmacochemical requirements for morphinomimetic action21, 39 have led to the search for and characterization of an opiate receptor in the central nervous system of mammals43, 46, 48. The existence of this receptor suggested the presence of an endogenous substance for which this binding site would be the physiological target and for which the exogenous opiates would substitute to induce their pharmacological effects. Such a hypothesis was corroborated by the isolation of the enkephalins26, two related pentapeptides, whose biological actions7, 23, 26 and regional distribution14, 27 corresponded to the pharmacological effects of opiates and the localization of the opiate binding sites32.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attali, B., Gouarderes, C., Audigier, Y. et al. (1981). Multiple binding sites for [3H]ethylketocyclazocine on the lumbo-sacral portion of the guinea-pig spinal cord. InAdvances in Endogenous and Exogenous Opioids, pp. 33–5. ( Tokyo: Kodansha Ltd )

    Google Scholar 

  2. Attali, B., Gouarderes, C., Mazarguil, H. et al. (1982). Differential interaction of opiates to multiple “kappa” binding sites in the guinea-pig lumbo-sacral spinal cord.Life Sci,31, 1371–5

    Article  CAS  PubMed  Google Scholar 

  3. Audigier, Y., Mazarguil, H., Gout, R. et al. (1981). Structure-activity relationships of enkephalin analogs at opiate and enkephalin receptors: correlation with analgesia.Eur. J. Pharmacol,63, 35–46

    Article  Google Scholar 

  4. Audigier, Y., Attali, B., Mazarguil, H. et al. (1982). Characterization of [3H]-etorphine binding in guinea-pig striatum after blockade of mu and delta sites.Life Sci,31, 1287–90

    Article  CAS  PubMed  Google Scholar 

  5. Besson, J. M., Le Bars, D. and Oliveras, J. L. (1978). L’analgesie morphinique: donnees neurobiologiques. Ann. Anesth. Franc.,19, 343–69

    Google Scholar 

  6. Boarder, M. R., Lockfield, A. J. and Barchas, J. D. (1982). Met-enkephalin (Arg6, Phe7) immunoreactivity in bovine caudate and bovine adrenal medulla. J. Neurochem.,39, 149–54

    Article  CAS  PubMed  Google Scholar 

  7. Bradley, P. B., Briggs, I., Gayton, R. J. et al. (1976). Effects of microiontophoretically applied methionine-enkephalin on single neurons in rat brainstem.Nature (London),261, 425–6

    Article  CAS  Google Scholar 

  8. Chang, K. J., Cooper, B. R., Hazum, E. et al. (1979). Multiple opiate receptors: different regional distribution in the brain and differential binding of opiates and opioid peptides.Mol Pharmacol,16, 91–104

    CAS  PubMed  Google Scholar 

  9. Chang, K. J. and Cuatrecasas, P. (1979). Multiple opiate receptors: enkephalins and morphine bind to receptors of different specificity.J. Biol. Chem,254, 2610–8

    CAS  PubMed  Google Scholar 

  10. Chang, K. J., Killian, A., Hazum, E. et al. (1981). Morphiceptin (NH4-Tyr-Pro-Phe-Pro-CONH2): a potent and specific agonist for morphine (μ) receptors.Science,212, 75–7

    Article  CAS  PubMed  Google Scholar 

  11. Chang, K. J., Hazum, E. and Cuatrecasas, P. (1981). Novel opiate binding sites selective for benzomorphan drugs.Proc. Natl. Acad. Sci. (USA),78, 4141–5

    Article  CAS  Google Scholar 

  12. Cochet, M., Chang, A. C. Y. and Cohen, S. N. (1982). Characterization of the structural gene and putative 5’ -regulatory sequences for human proopiomelanocortin.Nature (London),297, 335–9

    Article  CAS  Google Scholar 

  13. Comb, M., Seeburg, P. H., Adelman, J. etal. (1982). Primary structure of the human Met-and Leu-enkephalin precursor and its mRNA.Nature (London),295, 663–6

    Article  CAS  Google Scholar 

  14. Elde, R., Hökfelt, T., Johansson, O. et al. (1976). Immunohistochemical studies using antibodies to leucine-enkephalin: initial observations on the nervous system of the rat.Neuroscience,1, 349–51

    Article  CAS  PubMed  Google Scholar 

  15. Gacel, G., Fournie-Zaluski, M. C. and Roques, B. P. (1980). Tyr-DSer-Gly-Phe-Leu-Thr, a highly preferential ligand for δ-opiate receptors.FEBS Lett,118, 245–7

    Article  CAS  PubMed  Google Scholar 

  16. Gilbert, P. E. and Martin, W. R. (1976). The effects of morphine-and nalorphine-like drugs in the non-dependent, morphine-dependent and cyclazocine-dependent chronic spinal dog.J. Pharmacol. Exp. Ther,198, 66–82

    CAS  PubMed  Google Scholar 

  17. Goldstein, A., Tachibana, S., Lowney, L. I. et al. (1979). Dynorphin (1–13), an extra¬ordinarily potent opioid peptide.Proc. Natl. Acad. Sci. (USA),76, 6666–70

    Article  CAS  Google Scholar 

  18. Goldstein, A. and Ghazarossian, V. E. (1980). Immunoreactive dynorphin in pituitary and brain.Proc. Natl. Acad. Sci. (USA),77, 6207–10

    Article  CAS  Google Scholar 

  19. Gouarderes, C., Attali, B., Audigier, Y. et al. (1981). Opiate binding sites in the lumbo¬sacral spinal cord from various species. InAdvances in Endogenous and Exogenous Opioids, pp. 18–20. ( Tokyo: Kodansha Ltd )

    Google Scholar 

  20. Gouarderes, C., Audigier, Y. and Cros, J. (1982). Benzomorphan binding sites in rat lumbo-sacral spinal cord.Eur. J. Pharmacol,78, 483–6

    Article  CAS  PubMed  Google Scholar 

  21. Hardy, R. A. and Howell, M. G. (1965). Synthetic analgesics with morphine-like actions. InAnalgesics. Vol. 5, pp. 179–279. ( New York: Academic Press )

    Google Scholar 

  22. Harris, O. W. and Sethy, V. M. (1980). High affinity binding of [3H]ethylketocyclazocine to rat brain homogenate.Eur. J. Pharmacol,66, 121–3

    Article  CAS  PubMed  Google Scholar 

  23. Hill, R. G., Pepper, C. M. and Mitchell, J. F. (1976). Depression of nociceptive and other neurons in the brain by iontophoretically applied met-enkephalin.Nature (London),262, 604–6

    Article  CAS  Google Scholar 

  24. Hiller, J. M. and Simon, E. J. (1980). Specific, high affinity [3H]ethylketocyclazocine binding in rat central nervous system: lack of evidence for K receptors.J. Pharmacol. Exp. Ther,214, 516–9

    CAS  PubMed  Google Scholar 

  25. Huang, W. Y., Chang, R. C. C., Kastin, A. J. etal. (1979). Isolation and structure of pro-methionine-enkephalin: potential enkephalin precursor from porcine hypothalamus.Proc. Natl. Acad. Sci. (USA),76, 6177–80

    Article  CAS  Google Scholar 

  26. Hughes, J., Smith, T. W., Kosterlitz, H. W. et al. (1975). Identification of two related pentapeptides from the brain with potent opiate agonist activity.Nature (London),258, 577–9

    Article  CAS  Google Scholar 

  27. Hughes, J., Kosterlitz, H. W. and Smith, T. W. (1977). The distribution of methionine-enkephalin and leucine–enkephalin in the brain and peripheral tissues. Br. J. Pharmacol.,61, 639–47

    CAS  PubMed  Google Scholar 

  28. Hutchinson, M., Kosterlitz, H. W., Leslie, F. M. etal. (1975). Assessment in the guinea-pig ileum and mouse vas deferens of benzomorphans which have strong antinociceptive activity but do not substitute for morphine in the dependent monkey.Br. J. Pharmacol,55, 541–6

    CAS  PubMed  Google Scholar 

  29. Kakidani, H., Furutani, Y., Takahashi, H. et al. (1982). Cloning and sequence analysis of cDNA for porcineβ-neo-endorphin/dynorphin precursor.Nature (London), 298, 245–9

    Article  CAS  Google Scholar 

  30. Killpatrick, D. L., Jones, B. N., Lewis, R. W. etal. (1982). An 18 200dalton adrenal protein that contains four (Met)enkephalin sequences.Proc. Natl. Acad. Sci. (USA), 79, 3057–61

    Article  Google Scholar 

  31. Kosterlitz, H. W., Paterson, S. J. and Robson, L. E. (1981). Characterization of the K- subtype of the opiate receptor in the guinea-pig brain.Br. J. Pharmacol, 73, 939–49

    CAS  PubMed  Google Scholar 

  32. Kuhar, M. J., Pert, C. B. and Snyder, S. H. (1973). Regional distribution of opiate receptor binding in monkey and human brain.Nature (London), 245, 447–50

    Article  CAS  Google Scholar 

  33. Lazorthes, Y., Gouarderes, C., Verdie, J. C. et al. (1980). Analgesie par injection intrathecal de morphine. Etude pharmacocinetique et application aux douleurs irreductibles. Neurochimie, 26, 159–64

    CAS  Google Scholar 

  34. LeBars, D., Menetrey, D., Conseiller, D. etal. (1975). Depressive effects of morphine upon lamina V cell activities in the dorsal horn of the spinal cat.Brain Res,98, 261–77

    Article  CAS  Google Scholar 

  35. Li, C. H. and Chung, D. Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands.Proc. Natl. Acad. Sci. (USA),73, 1145–8

    Google Scholar 

  36. Lord, J. A. H., Waterfield, A. A., Hughes, J. H. etal. (1977). Endogenous opioid peptides: multiple agonists and receptors.Nature (London),267, 495–9

    Article  CAS  Google Scholar 

  37. Mains, R. E., Eipper, B. A. and Ling, N. (1977). Common precursor to corticotropins and endorphins.Proc. Natl. Acad. Sci. (USA),74, 3014–8

    Article  CAS  Google Scholar 

  38. Martin, W. R., Eades, C. G., Thompson, J. A. et al. (1976). The effects of morphine-and nalorphine-like drugs in the non-dependent and the morphine-dependent chronic spinal dog.J. Pharmacol. Exp. Ther,197, 517–32

    CAS  PubMed  Google Scholar 

  39. May, E. L. and Sargent, L. J. (1965). Morphine and its modifications. In Analgesics. Vol. 5, pp. 123–77. ( New York: Academic Press )

    Google Scholar 

  40. Minamino, N., Kiturama, K., Hayashi, Y. et al. (1981). Regional distribution of a-neo-endorphin in rat brain and pituitary. Biochem. Biophys. Res. Comm.,102, 226–34

    Article  CAS  PubMed  Google Scholar 

  41. Nakanishi, S., Inoue, A., Kita, T. et al. (1979). Nucleotide sequence of cloned cDNA for bovine corticotropin–β-ipotropin precursor.Nature (London), 278, 423–7

    Article  CAS  Google Scholar 

  42. Noda, M., Furutani, Y., Takahashi, H. et al. (1982). Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin.Nature (London), 295, 202–8

    Article  CAS  Google Scholar 

  43. Pert, C. B. and Snyder, S. H. (1973). Opiate receptor: demonstration in nervous tissue.Science,179, 1011–4

    Article  CAS  PubMed  Google Scholar 

  44. Pfeiffer, A., Pasi, A., Mehraein, P. et al. (1981). A subclassification of K-sites in human brain by use of dynorphin (1–17).Neuropeptides,2, 89–97

    Article  CAS  Google Scholar 

  45. Rossier, J., Vargo, T., Minick, K. et al. (1977). Regional distribution ofβ-endorphin and enkephalin contents in rat brain and pituitary.Proc. Natl. Acad. Sci. (USA),74, 5162–5

    Article  CAS  Google Scholar 

  46. Simon, E. J., Hiller, J. M. and Edelman, I. (1973). Stereospecific binding of the potent narcotic analgesic [3H]etorphine to rat brain homogenates.Proc. Natl. Acad. Sci. (USA),70, 1947–9

    Article  CAS  Google Scholar 

  47. Stern, A. S., Lewis, R. V., Kimura, S. et al. (1979). Isolation of the opioid heptapeptide Met-enkephalin (Arg6, Phe7) from bovine medullary granules and striatum.Proc. Natl. Acad. Sci. (USA),76, 6680–3

    Article  CAS  Google Scholar 

  48. Terenius, L. (1973). Stereospecific interaction between narcotic analgesics and a synaptic membrane fraction of rat cerebral cortex.Acta Pharmacol. Toxicol,32, 317–20

    Article  CAS  Google Scholar 

  49. Waterfield, A. A., Smockum, R. W. J., Hughes, J. et al. (1977). In vitro pharmacology of the opioid peptides, enkephalins and endorphins.Eur. J. Pharmacol,43, 107–16

    Article  CAS  PubMed  Google Scholar 

  50. Weber, E., Evans, C. J., Samuelsson, S. J. et al. (1981). Novel peptide neuronal system in rat brain and pituitary.Science,214, 1248–51

    Article  CAS  PubMed  Google Scholar 

  51. Wood, P. L., Rackham, A. and Richard, J. (1981). Spinal analgesia: comparison of the mu agonist morphine and the kappa agonist ethylketazocine.Life Sci,28, 2119–25

    Article  CAS  PubMed  Google Scholar 

  52. Wuster, M., Schultz, R. and Herz, A. (1981). Multiple opiate receptors in peripheral tissue preparations.Biochem. Pharmacol,30, 1883–7

    Article  CAS  PubMed  Google Scholar 

  53. Yaksh, T. L. (1978). Analgesic actions of intrathecal opiates in cat and primate.Brain Res,153, 205–10

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 MTP Press Limited

About this chapter

Cite this chapter

Audigier, Y., Attali, B., Gouardères, C., Mazarguil, H., Cros, J. (1983). Multiplicity of kappa opiate sites in the central nervous system. In: Ruckebusch, Y., Toutain, PL., Koritz, G.D. (eds) Veterinary Pharmacology and Toxicology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6604-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6604-8_45

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6606-2

  • Online ISBN: 978-94-009-6604-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics