Skip to main content

Blood oxygen affinity in relation to yolk-sac and chorioallantoic gas exchange in the developing chick embryo

  • Chapter
Respiration and metabolism of embryonic vertebrates

Part of the book series: Perspectives in vertebrate science ((PIVS,volume 3))

Abstract

A complete profile of blood O2 affinity throughout chick development from the inception of blood formation to adulthood shows three clearly marked phases. In Phase I from incubation day 4 to 8. P50 increases from 38 to 52 torr; in Phase II from day 8 to day 18 (pipping) P50 falls from 52 to 30 torr; in Phase III P50 rises from 30 torr at pipping to 47 torr in the adult chicken. Phase I, concurrent with the replacement of red cells that derive from yolk-sac hematopoesis to definitive red cells formed in the embryo, is not associated with hypoxie stress to the embryo. High P50 of Phase I is an adaptation that assures higher mixed venous O2 partial pressures in the presence of significant mixed venous shunt fractions. Phase II is coincident with chorioallantoic gas exchange, definitive red cells, and progressive hypoxia as the O2 consumption of the embryo increases. The increase in blood O2 affinity, due to progressive decrease in red cell [ATP], is adaptive in ensuring adequate O2 saturation of arterialized blood. In Phase III, the transition to convective air-breathing and removal of the \({P_{{O_2}}}\) , restriction on loading, the increase in P50 is an advantage for O2 delivery to tissues. This increase in P50 is due to the rise in intra-erythrocyte [IPP]. P50 changes during chick development illustrate the interplay between two major factors affecting the O2 pressure at which delivery of O2 to tissue occurs: large shunt fractions and a diffusive limitation on hemoglobin loading. When hypoxia threatens adequate loading, lower P50 secures the required arterial O2 saturations. In the absence of an hypoxie limitation on loading, as in Phases I and III, blood O2 affinity decreases in favor of maximizing tissue O2 delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberman, A. (1977). Crossover \({P_{{O_2}}}\) a measure of the variable effect of increased Psir on mixed venous PAm. Rev. Respir. Dis.115: 173–175.

    CAS  Google Scholar 

  • Bartlett, G.R. and Borgese, T. A. (1976). Phosphate compounds in red cells of the chicken and duck embryo and hatchling. Comp. Biochem. Physiol.55A: 207–210.

    Article  Google Scholar 

  • Baumann, R., Padeken. S., Haller. E. and Brilmaÿer, T. (1983). Effects of hypoxia on oxygen affinity, hemoglobin pattern. and blood volume of early chicken embryos. Am. J. Physiol.244: R733–R741.

    PubMed  CAS  Google Scholar 

  • Cirotto, C.. Panera, F. and Geraci, G. (1977). Two different populations of primitive erythroid cells in the chick embryo. Der. Biol.61: 384–387.

    CAS  Google Scholar 

  • Fitze-Gschwind, V (1973). Zur Entwicklung der Chorioallantoismembran des Huhnchens. Ergeb. Anat. Entwicklungsgesch.47: 7–52.

    Google Scholar 

  • Freeman, B.M. and Vince. M.A. (1974). Development of the Avian Embryo. Wiley, New York, p. 121.

    Book  Google Scholar 

  • Grima, M., Girard, H. and Dejours, P. (1983). Blood oxygen consumption and erythrocyte types during embryonic and post-natal growth in chicken. Am. J. Physiol.244: C32–C36.

    PubMed  CAS  Google Scholar 

  • Grote, J. (1967). Die Sauerstoffdiffusionskonstanten in Lungengewebe and Wasser and ihre Tem-peratureabhangigkeit. Pfluegers Arch. 295: 245–254.

    Article  CAS  Google Scholar 

  • Ingermann, R., Stock. M.. Metcalfe, J. and Shih, T. (1983). Effect of ambient oxygen on organic phosphate concentrations in erythrocytes of the chick embryo. Respir. Physiol.51: 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Ingram, V.M. (1981). Hemoglobin switching in amphibians and birds. In: Hemoglobins in Development and Differentiation. G. Stamatovannopoulos and A.W. Nienhuis, eds., Liss, Now York, pp. 147–160.

    Google Scholar 

  • Isaacks, R., Harkness. D.. Froeman. G., Goldman, P., Adler, J., Sussman, S. and S. Roth (1976). Relationship between the major phosphorylated metabolic intermediates and oxygen affinity of whole blood in chick embryos and chicks. Comp. Biochern. Physiol.53A: 151–156.

    Article  Google Scholar 

  • Jelkmann, W. and Bauer, C. (1977). Oxygen affinity and phosphate compounds of red blood cells during intrauterine development in rabbits. Pfluegers Arch. 372: 149–156.

    Article  CAS  Google Scholar 

  • Kutchai, H. and Steen, J. (1971). Permeability of the shell and shell membranes of hen’s eggs during development. Respir. Physiol.11: 265–278.

    Article  PubMed  CAS  Google Scholar 

  • Lapennas, G. and Reeves. R. B. (1983a). Oxygen affinity and equilibrium curve shape in blood of chicken embryos. Respir. Physiol.52: 13–26.

    Article  CAS  Google Scholar 

  • Lapennas, G. and Reeves, R.B. (19836). Oxygen affinity of blood of adult domestic chicken and red jungle fowl. Respir. Physiol. 52: 27–39.

    Google Scholar 

  • Lomholt, J.P. (1976). The development of the oxygen permeability of the avian egg shell and its membranes during incubation. J. Exp. Zool.198: 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe, J.. McCutcheon, L. Francisco, D., Metzenberg, A. and J. Welch (1981). Oxygen availability and growth of the chick embryo. Respir. Physiol.46: 81–88.

    Article  PubMed  Google Scholar 

  • Paganelli, C.V. (1980). The physics of gas exchange across the avian eggshell. Am. Zool. 20: 329–338. Piiper, J., Tazawa, H.. Ar. A. and Rahn, H. (1980). Analysis of chorioallantoic gas exchange in the chick embryo. Respir. Physiol_39: 273–284.

    Article  Google Scholar 

  • Reeves, R.B. (1980). A rapid micro method for obtaining oxygen equilibrium curves on whole blood. Respir. Physiol.42: 229–315.

    Article  Google Scholar 

  • Reeves, R.B., Park, J.. Lapennas, G. and Olszowka, A. (1982). Oxygen affinity and Bohr coefficients of dog blood. J. Appl. Physiol.53: 87–95.

    PubMed  CAS  Google Scholar 

  • Romanoff, A.L. (1960). TheAvian Embryo. Macmillan, New York.

    Google Scholar 

  • Rossoff, L., Zeldin, R., Hew, E. and Aberman. A. (1980). Changes in blood P90: Effects on oxygen delivery when arterial hypoxemia is due to shunting. Chest77: 142–146.

    Article  PubMed  CAS  Google Scholar 

  • Tazawa, H. (1980). Oxygen and CO, exchange and acid-base regulation in the avian embryo. Am. Zool. 20: 395–404.

    Google Scholar 

  • Tazawa, H., Ar, A., Rahn, H. and Piiper, J. (1980). Repetitive and simultaneous sampling from the air cell and blood vessels in the chick embryo. Respir. Physiol.39: 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Vandecasserie, C., Paul, C., Schnek, A. and Leonis, J. (1973). Oxygen affinity of avian hemoglobins. Comp. Biochem. Physiol.44A: 711–718.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Reeves, R.B. (1984). Blood oxygen affinity in relation to yolk-sac and chorioallantoic gas exchange in the developing chick embryo. In: Seymour, R.S. (eds) Respiration and metabolism of embryonic vertebrates. Perspectives in vertebrate science, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6536-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6536-2_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6538-6

  • Online ISBN: 978-94-009-6536-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics