Skip to main content

Adult and embryonic metabolism in birds and the role of shell conductance

  • Chapter
Book cover Respiration and metabolism of embryonic vertebrates

Part of the book series: Perspectives in vertebrate science ((PIVS,volume 3))

Abstract

The mass-specific metabolic rate (SMR) of the non-passerine avian embryo at the pre-internal pipping (pre-IP) stage is about half that predicted for an adult bird of the same body mass. It has been suggested that the typical embryo at this stage of development has an SMR which is similar to that of the incubating adult even though its body mass is ca. 15–20 times smaller (Hoyt and Rahn, 1980). The low embryonic metabolic rate at pre-IP may be set by the limit imposed on gas transport by shell conductance. Increased metabolic demand beyond pre-IP for the final hatching act cannot be met by gas diffusion through the shell without profound hypoxia; it must be satisfied by the initiation of pulmonary gas ex­change. However, the low embryonic metabolic rate at pre-IP appears to be precisely matched in each species to shell conductance so that similar air cell O2. and CO2, tensions are found across a wide spectrum of embryonic size and incubation period. These values are ca. 100 and 40 torr for \({P_{{O_2}}}\) , and \({P_{C{O_2}}}\) , respec­tively, at the pre-IP stage of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, R.A., Whittow. G.C.. Paganelli, C.V. and Pettit, T.N. (1980). Oxygen consumption, gas exchange, and growth of embryonic Wedge-tailed Shearwaters (Puffinus pacificus chlororhynchus). Physiol. Zool. 53: 210–221.

    Google Scholar 

  • Barcroft, J., Flexner. L.B. and McClurkin. T. (1934). The output of the foetal heart in the goat. J. Physiol. (London) 82: 498–508.

    CAS  Google Scholar 

  • Bohr, Chr. (1900). Der respiratorische Stoffwechsel des Säugethierembryo. Skand. Arch. Physiol.10: 413–424.

    Google Scholar 

  • Carey, C., Thompson, E.L., Vleck, C.M. and James, F.C. (1982). Avian reproduction over an attitudinal gradient: incubation period. hatchling mass, and embryonic oxygen consumption. Auk99: 710–718.

    Google Scholar 

  • Dawes. G.S. (1968). Foetal and Neonatal Physiology. Year Book, Chicago.

    Google Scholar 

  • Dawes. G.S. and Mott. J.C. (1959). The increase in oxygen consumption of the lamb after birth. J. Physiol. (London) 146: 295–315.

    CAS  Google Scholar 

  • Dawson, W.R.. I Ludson..I. W and Hill. R.W. (1972). Temperature regulation in the newly hatched Laughing Gull (Larus• Atricilla). Condor74: 177–184.

    Article  Google Scholar 

  • Dawson. W. Bennet A. F. and Hudson,.L. W. (1976). Metabolism and thermoregulation in hatchling Ring-billed Gulls. Condor78: 49–60.

    Google Scholar 

  • Drenth, R.H. (1967). Functional Aspects of Incubation in the Herring Gull Larus argentatus E.J. Brill. Leiden.

    Google Scholar 

  • Hasselbalch, A.K. (1900). Heber die respiratorischen Stoffwechsel des Hühnerembryos. Skand. Arch. Physiol.10: 353–402.

    Google Scholar 

  • Heinroth, O. (1922). Die Beziehungen zwischen Vogelgewicht. Eigewicht, Gelegegewicht and Brutdauer. J. Ornithol.70: 172–285.

    Article  Google Scholar 

  • Hissa, R., Saarela, S., Rintamäki, H., Linden, H. and Hohtala, H. (1983). Energetics and develop-ment of temperature regulation in Capercaillie Tetrao urogallus. Physiol. Zool. 56: 142–151.

    Google Scholar 

  • Hoyt, D.F., Board, R.G., Rahn, H. and Paganelli. C.V. (1979). The eggs of Anatidae: conductance,pore structure and metabolism. Physiol. Zoo/.52: 438–450.

    Google Scholar 

  • Hoyt, D.F. and Rahn. H. (1980). Respiration of avian embryos-a comparative analysis. Respir. Physiol.39: 255–264.

    Article  PubMed  CAS  Google Scholar 

  • Ingermann, R.L., Stock, M.K., Metcalfe, J. and Shih, T.-B. (1983). Effect of ambient oxygen on organic phosphate concentrations in erythrocytes of the chick embryo. Respir. Physiol.51: 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Kleiber, M. (1965). Respiratory exchange and metabolic rate. In: Handbook of Physiology, Respiration, Vol. II, Ch. 35. W.O. Fenn and H. Rahn, eds. The American Physiological Society, Washington, D.C. pp. 927–938.

    Google Scholar 

  • Kleiber, M.. Cole, H.H. and Smith, A. H. (1943). Metabolic rate of rat fetuses in vitro. J. Cell Comp Physiol.22: 167–176.

    Google Scholar 

  • Koskimies, J. (1962). Ontogeny of thermorcgulation and energy metabolism in some gallinaceous birds. Ric. Zool. Appl. Caccia Suppl.4: 149–160.

    Google Scholar 

  • Koskimies, J. and Lahti, I (1964). Cold-hardiness of the newly hatched young in relation to ecology and distribution in ten species of European ducks. Auk81: 281–307.

    Google Scholar 

  • Kutchai, H. and Steen, J.B. (1971). Permeability of the shell and shell membranes of hens’ eggs during development. Respir. Physiol. 11: 265–278.

    Article  CAS  Google Scholar 

  • Lasiewski, R.C. and Dawson, W.R. (1967). A reexamination of the relation between standard metabolic rate and body weight in birds. Condor69: 13–23.

    Article  Google Scholar 

  • Lomholt, J.P. (1976). The development of the oxygen permeability of the avian egg shell and its membranes during incubation. J. Exp. Zool.198: 177–184.

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon, I.E., Metcalfe. J.. Metzenherg, A.B. and Ettinger, T. (1982). Organ growth in hyperoxic and hypoxic chick embryos. Respir. Physiol.50: 153–163.

    CAS  Google Scholar 

  • McCutcheon, I.E., Metcalfe. J.. Metzenherg, A.B. and Ettinger, T. (1982). Organ growth in hyperoxic and hypoxic chick embryos. Respir. Physiol.50: 153–163.

    Article  PubMed  CAS  Google Scholar 

  • Paganelli, C.V., Ackerman. R. and Rahn. H. (1978). The avian egg: in vivoconductances of O,, CO, and water vapor in late development. In: Respiratory Function in Birds, Adult and Embryonic. J. Piiper, ed., Springer-Verlag. New York, pp. 212–218

    Google Scholar 

  • Palokangas, R. and Hissa. R. (1971). I’hermoregulation in young Black-headed Gull (Lams ridibundus L.) (Comp. Biochem. Phvsiol. t38A: 743–750.

    Article  Google Scholar 

  • Piiper, J., Tazawa. H., Ar. A. and Rahn. H. (1980). Analysis of chorioallantoic gas exchange in the chick embryo. Re.spir Physiol. 39: 273–284.

    Article  CAS  Google Scholar 

  • Pettit, T.N., Grant. G.S.. Whitlow. G.C.. Rahn, H. and Paganelli, C.V. (1981). Respiratory gas exchange and growth of White Tern embryos. Condor83: 355–361.

    Google Scholar 

  • Pettit, T.N., Grant, G.S.- Whittow. G.C.. Rahn, H. and Paganelli, C.V. (1982a). Respiratory gas exchange and growth of Bonin Petrel embryos. Physiol. Zool.55: 162–170.

    Google Scholar 

  • Pettit, T.N., Grant. G.S.. Whit tow , G.C., Rahn. H. and Paganelli, C.V. (1982b). Embryonic oxygen consumption and growth of Laysan and Black-tooted Albatross. Am. J. Phvsiol. 242 (Regulatory Integrative Comp. Physiol. II): Rl2l-R128.

    Google Scholar 

  • Rahn, H., Paganelli, C.V. and Ar. A. 11974). The avian egg: air cell gas tension , metabolism and incubation time. Respir. Physiol. 22: 297–309.

    Google Scholar 

  • Rahn, H., Paganelli, C.V. and Ar, A. (1975). Relation of avian egg weight to body. Auk92: 750–765.

    Google Scholar 

  • Rahn, H. and Ar. A. (1980). Gas exchange of the avian egg: time, structure, and function. Am. Zool. 20: 477–484.

    Google Scholar 

  • Stock, M.K., Francisco, D.L. and Metcalfe, J. (1983). Organ growth in chick embryos incubated in 40% or 70% oxygen. Respir. Physiol. 52:1–11.

    Google Scholar 

  • Tazawa, H., Ar, A., Rahn, H. and Piiper. J. (1980). Repetitive and simultaneous sampling from the air cell and blood vessels in the chick embryo. Respir. Physiol.39: 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Tazawa, H., Mikami. T., and Yoshimoto, C. (1971). Effect of reducing the shell area on the respiratory properties of chicken emhryonic blood. Respir. Physiol.13: 352–360.

    Article  PubMed  CAS  Google Scholar 

  • Tazawa, H., Visschedijk, A.H.J., Wittmann. J. and Piiper, J. (1983). Gas exchange, blood gases andacid-base status in the chick before, during and after hatching. Respir. Physiol.53: 173–185.

    Article  PubMed  CAS  Google Scholar 

  • Temple, G.F. and Metcalfe. J. (1970). The effects of increased incubator oxygen tension on capillary development in the chick chorioallantois. Respir. Physiol.9: 216–233.

    Article  PubMed  CAS  Google Scholar 

  • Vleck, D., Vleck, C.M. and Hoyt, D.H. (1979). Metabolism of avian embryos: patterns in altricial and precocial birds. Physiol. Zool.52: 363–377.

    Google Scholar 

  • Visschedijk, A.H.J. (1968). The air space and embryonic respiration. 1. The pattern of gaseous exchange in the fertile egg during the closing stages of incubation. Br. Poult. Sci.9: 173–184.

    Article  PubMed  CAS  Google Scholar 

  • Visschedijk, A.H.J. (1980). Effects of barometric pressure and abnormal gas mixtures on gaseous exchange of the avian embryo. Am. Zool. 20: 469–476.

    Google Scholar 

  • Visschedijk, A.H.J., Ar, A., Rahn, H. and Piiper, J. (1980). The independent effects of atmospheric pressure and oxygen partial pressure on gas exchange of the chicken embryo. Respir. Physiol.39: 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Wangensteen, O.D.. Wilson, D. and Rahn, H. (1970/71). Diffusion of gases across the shell of the hen’s egg. Respir. Physiol. 11: 16–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Paganelli, C.V., Rahn, H. (1984). Adult and embryonic metabolism in birds and the role of shell conductance. In: Seymour, R.S. (eds) Respiration and metabolism of embryonic vertebrates. Perspectives in vertebrate science, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6536-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6536-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6538-6

  • Online ISBN: 978-94-009-6536-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics