Advertisement

Robustness of Three Sequential One-Sample Tests Against Non-Normality

  • Dieter Rasch
Part of the Theory and Decision Library book series (TDLB, volume 1)

Abstract

By simulation it was shown that only one of three sequential tests of the hypothesis H0: μ = μ0against HA: (μ-μ0)2 = σ2d2 is robust with respect to the first kind risk α but not with respect to the second kind risk β. An-other test is robust with respect to β but not with respect to α.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett, M.S. The large sample theory of sequential tests. Proc. Comb. Phil. Soc. 42, (1946) 239–244.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Feige, K.-D. et. al. Results of comparisons between different random number generators. in: Rasch, D., and Tiku, M. L.: Robustness of statistical methods and nonparametric statistics; VEB Deutscher Ver-lag der Wissenschaften Berlin 1984. 80–84.Google Scholar
  3. Fleishman, A. L. A method for simulating non-normal distributions. Psychometrika 43 (1978) 521–532.zbMATHCrossRefGoogle Scholar
  4. Guiard, V. (ed.) Robustheit II. Probleme der angewandten Statistik. FZ für Tierproduktion Dummerstorf-Rostock, Heft 5 (1981).Google Scholar
  5. Herrendorfer, G. (ed.) Robustheit I. Probleme der angewandten Statistik. FZ für Tierproduktion Dummerstorf-Rostock, Heft 4 (1980).Google Scholar
  6. Lim, T. K., and Fung, K. Y. Sequential t-tests based on M estimation. Statist. Comp. Simul. 14 (1982) 271–281.CrossRefGoogle Scholar
  7. Mann, I. E. A simple sequential criterion for testing a normal mean with unknown variance. Commun. Statist.-Theor. Meth. A 9 (1980) 1619–1624.CrossRefGoogle Scholar
  8. Nürnberg, G. Beitrage zur Versuchsplanung für die Schätzung von Varianzkomponenten und Robustheitsuntersuchungen zum Vergleich zweier Tests. Probleme der angewandten Statistik Heft 6, FZ für Tier-produktion Dummerstorf-Rostock der AdL der DDR (1982).Google Scholar
  9. Rasch, D., and Herrendörfer, G. Robustheit statistischer Verfahren. Rostock, Math. Kolloq. 17 (1981) 87–104.zbMATHGoogle Scholar
  10. Rasch, D., Herrendörfer, G. (ed.) Robustheit III. Probleme der angewandten Statistik. FZ für Tierproduktion Dummerstorf-Rostock, Heft 7, (1982).Google Scholar
  11. Rasch, D., and Teuscher, F. Das System der gestutzten Normalverteilungen. 7. Sitzungsbericht der Interessengemeinschaft Mathematische Statistik MG DDR. Berlin (1982).Google Scholar
  12. Rasch, D. First results on robustness of the one-sample sequential t-test. Trans 9th Prague Conference on Inform. Theory and Mathem. Statist. 1983, 133–140.Google Scholar
  13. Wald, A. (1947) Sequential Analysis. New York: Wiley.zbMATHGoogle Scholar

Copyright information

© Academy of Agricultural Sciences of the GDR, Research Centre of Animal Production, Dummerstorf-Rostock, DDR 2551 Dummerstorf. 1984

Authors and Affiliations

  • Dieter Rasch
    • 1
  1. 1.Academy of Agricultural Sciences of the GDRResearch Centre of Animal Production Dummerstorf-RostockGermany

Personalised recommendations