Optimal Designs for Contaminated Linear Regression

  • Norbert Gaffke
Part of the Theory and Decision Library book series (TDLB, volume 1)


One notion of robustness of linear regression designs refers to moderate deviations of the regression function from the ideal linear regression setup, which may be modelled by including additive contamination functions. These may be caused for example in polynomial regression by higher order terms, which have not been included in the ideal model. The paper shows how the concepts of optimal design theory for linear regression can be extended to contaminated linear regression and points out the main problems arising in the contaminated case.


Regression Function Linear Estimator Borel Probability Measure Approximate Theory Optimal Robust Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, G. G. Optimum designs for biased estimation in linear spline regression. Sankhyā 43 (1981), Ser. B, 198–211.zbMATHGoogle Scholar
  2. Atkinson, A. C. Planning experiments to detect inadequate regression models. Biometrika 59 (1972) 275–293.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Box, G. E. P., Draper, N. R. A basis for the selection of a response surface design. J. Amer. Statist. Assoc. 54 (1959) 622–654.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Cook, R. D., Nachtsheim, C. J. Model robust, linear-optimal designs. Technometrics 24 (1982) 49–54.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Galil, Z., Kiefer, J. Comparison of Box-Draper and D-optimum designs for experiments with mixtures. Technometrics 19 (1977) 441–444.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Hoffmann, K. Admissibility of linear estimators with respect to restricted parameter sets. Math. Operationsforsch. Statist., Ser. Statistics 8 (1977) 425–438.zbMATHGoogle Scholar
  7. Huber, P. J. Robustness and designs. In: Srivastava, J. N. (ed.): A Survey of Statistical Design and Linear Models. North Holland, 1975 pp. 287–301.Google Scholar
  8. Karson, M. J., Manson, A. R., Hader, R. J. Minimum bias estimation and experimental design for response surfaces. Technometrics 11 (1969) 461–475.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Lauter, E. Optimal multipurpose designs for regression models Math. Operationsforsch. u. Statist. 7 (1976) 51–68.MathSciNetCrossRefGoogle Scholar
  10. Li, K. C., Notz, W. Robust designs for nearly linear regression. J. Statist. Plann. Infer. 6 (1982) 135–151.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Marcus, M. B., Sacks, J. Robust designs for regression problems. Statistical Decision Theory and Related Topics II. Academic, New York, 1977, 245–268.Google Scholar
  12. Pesotchinsky, L. Optimal robust designs: Linear regression in RK. Ann. Statist. 10 (1982) 511–525.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Sacks, J., Ylvisaker, D. Linear estimation for approximately linear models. Ann. Statist. 6 (1978) 1122–1137.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Stigler, S. M. Optimal experimental design for polynomial regression. J. Amer. Statist. Assoc. 66 (1971) 311–318.zbMATHCrossRefGoogle Scholar
  15. Studden, W. J. Some robust-type D-optimal designs in polynomial regression. J. Amer. Statist. Assoc. 77 (1982) 916–921.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Welch, W. J. A mean squared error criterion for the design of experiments. Biometrika 70 (1983) 205–213.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Academy of Agricultural Sciences of the GDR, Research Centre of Animal Production, Dummerstorf-Rostock, DDR 2551 Dummerstorf. 1984

Authors and Affiliations

  • Norbert Gaffke
    • 1
  1. 1.Institut für Statistik und WirtschaftsmathematikRWTH AachenGermany

Personalised recommendations