Skip to main content

Solution and Solid State C-13 and N-15 NMR Studies of Visual Pigments and Related Systems: Rhodopsin and Bacteriorhodopsin1a

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 139))

Abstract

This paper constitutes a chronological review of C-13 and N-15 solution and solid state NMR investigations of bovine rhodopsin and the purple membrane of Halobacterium halobium. Model retinylideneimines and their protonated species yielded rather informative variation in C-13 chemical shifts, as a function of structure and conformation, Retinals, specifically enriched with C-13 at key atom positions, were incorporated in rhodopsin and bacteriorhodopsin during the bleaching-regeneration process. The labeled pigments exhibited C-13 signals which were interpreted in terms of the state of protonation and conformation of the Schiff base linkage between the chromophore and opsin (15-anti in rhodopsin and light adapted bacteriorhodopsin) and chromophore-protein interactions. Peaks arising from both all-trans and 13-cis-retinylidene moieties were observed in dark adapted bacteriorhodopsin. Upon protonation, the Schiff base nitrogen of model compounds displayed dramatic (up to 146 ppm) high field N-15 shifts (an order of magnitude larger than C-13). Hydrogen bonding also led to important (up to 50 ppm) nitrogen shielding. H. halobium grown on a medium containing ɛ15N-lysine incorporated, with high yield, the labeled amino acid in all of the seven lysine sites of bacteriorhodopsin. Of these, one forms the shift could be observed only in lyophilized preparations. It appears that the degree of protonation of the Schiff base that the degree of protonation of the Schiff base linkage depends on the degree of hydation of the linkage depends on the degree of hydration of the specimen. Double labeling (13C=15N) is expected to provide valuable information concerning the structure and conformation of this moiety. The six lysine residues not involved in retinal binding yielded, in a micellar (octyl-β-glucoside) solution, N-15 signals of various linewidths, spread over a narrow (2–4 ppm) range. This could be interpreted in terms of lysine residue interactions within the protein. Preliminary results indicate the feasibility of in vivo measurements which avoid alterations inherent to extraction, purification, and/or lyophilization procedures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Part 8 of the series: Spectral Studies of Visual Pigments and Related Systems. b) Address correspondence to this author.

    Google Scholar 

  2. Present address: a) Department of Chemistry, University of Guelph, Ontario; b) Department of Chemistry, University of Southern Illinois, Carbondale; c) The Lubrizol Corporation, Wickliffe, Ohio; d) Department of Chemistry, University of Alabama, Birmingham, Alabama,

    Google Scholar 

  3. H. Davson, Physiology of the Eye, Fourth Edition, Academic Press: New York & San Francisco, 1980.

    Google Scholar 

  4. The noun scotopia came into the new Latin from the Greek skotos which means darkness. Scotopia is defined by the American Heritage Dictionary as the “ability to see in dim light”. Scotoma is an area of pathologically diminished vision within the visual field.

    Google Scholar 

  5. Photopia is the adaptation of the eye to light: daylight vision. Photophobia is the abnormal intolerance of light.

    Google Scholar 

  6. For recent reviews see: (a) R. Uhl & E.W. Abraham-son, Chem.Rev. 981, £1, 291; (b) R.R. Birge, Ann. Rev. Biophys. Bioeng. 1981, JJL, 315.

    Google Scholar 

  7. J. W. Shriver, G. D. Mateescu, R. Fager, D. Torchia, E.W. Abrahamson, Nature(London), 1977, 270, 271, and references therein.

    Article  PubMed  CAS  Google Scholar 

  8. J. W. Shriver, Ph.D. Thesis, 1977, Case Western Reserve University, Cleveland, Ohio.

    Google Scholar 

  9. a.) R.A. Marton & G.A.J. Pitt, Biochem J.1955, 12., 128; (b) A. Kropf & R. Hubbard, Ann.N.Y.Acad. Sci. 1958, 11,266; (c) D. Bownds,Nature (London),1967, 21£,1178?(d) R. Hubbard,Nature(London),1969,221, 432; (e) L.Rinini, R.G. Kilpon & D. Gill, Biochem. Biophys. Res. Commun. 1970, 11, 492; (f) A.Lewis, R.S. Fager & E.W.Abrahamson, J. Raman Spectrosc. 1973,1,465; (g) A.R.Oseroff & R.H. Callenderbiochemistry, 1974,11,4243; (h)R.Mathies & L.Stryer, Proc,Natl.Acad. Sci. USA, 1976,11, 2169; (i) R.H. Callender, A. Doukas, R. Crouch & K.Nakanishi, Biochemistry, 1976,11, 1621; (j) F. Siebert and W. Mantele, Eur. J. Biochem. 1983, 1M, 565? M. Stockburger, W. Klussmann, H.Gatermann, G. Massig and R. Peters, Biochemistry, 1980, 1, 4886.

    Google Scholar 

  10. The existence of a nonprotonated orhydrogen bonded Schiff base was suggested by: (a) K. Van der Meer,J.J.C.Mulder & J.Lugtemburg, Photochem. Photobiol. 1976, 24, 363; (b) K. Peters, M.L. Applebury & P. Rentzepis, Proc. Natl. Acad. Sci. USA 1977,11, 3119; (c)F. I. Harosi, J. Favrot, J. M.Leclercq, D.Vocelle & C.Sandorfy, Rev. Can. Biol.1978,11,257; (d)J.Favrot, J.M. Leclercq, R. Roberge, C. Sandorfy & D. Vocelle, Chem. Phys. Letters,1978,51,433; (e) F. Siebert & W. Mantele, Biophys. Struct. Mech. 1980, 147; (f) J. Leclercq, J.M. Leclercq & C. Sandorfy, Chem. Phys. 1982,21,246, and references therein; (g) P. Dupuis, F. I. Harosi, C. Sandorfy, J. M. Leclercq & D. Vocelle, Rev. Can. Biol. 1980, 11,247.

    Google Scholar 

  11. M. Karplus & J.A.Pople, J.Chem.Phys. 1963,M,2803.

    Google Scholar 

  12. G. D. Mateescu, W.G.Copan,D.D. Muccio, D. V. Water- hous & E.W. Abrahamson, Proc.Int.Symp.Synt. and Appl. of Isotop. Label. Compds., W.P. Duncan and A.B. Susan (Eds.), Elsevier: Amsterdam, 1983.

    Google Scholar 

  13. W.G. Copan, Ph.D. Thesis, 1982, Case Western Reserve University, Cleveland, Ohio.

    Google Scholar 

  14. a) G. Wald & P.K. Brown, Proc. Natl. Acad. Sci. 1950, 36, 84; (b) R. Hubbard & G. Wald, J. Gen. Physiol. 1952, Mr 269.

    Google Scholar 

  15. a) D. Oesterhelt & W. Stoeckenius, Nature New Biol. 1971,211,149; (b) J.J. Pettei, A.P. Yudd, K. Nakanishi, R.Henselman & W. Stoeckenius, Biochemistry, 1977, 16, 1955.

    Google Scholar 

  16. a) G.A. Olah and G.D. Mateescu, J. Am. Chem. Soc. 1970,22,1430; (b) H. Spiesecke and W.G. Schneider, Tetrahedron Lett. 1961, 14, 468.

    Google Scholar 

  17. a) J.W. Shriver, E.W. Abrahamson, and G.D. Mateescu, J. Am. Chem. Soc. 1976, 98, 2407; (b) Y. Inoue, Y. Tokito, R. Chojo and Y.Miyoshi,ibid. 197799, 5592.

    Google Scholar 

  18. J.W. Shriver, G.D. Mateescu, E.W. Abrahamson, Biochemistry, 1979, 11, 4785.

    Article  Google Scholar 

  19. a) R. Rowan,III & B.D. Sykes, J. Am.Chem. Soc. 1974,Mr 7000; (b) R.Rowan, III, A. Warshel, B.D. Sykes & M. Karplus, Biochemistry 1974, 11, 970. (c) Y. Inoue, A. Takahashi, Y. Tokito, R. Chujo,and Y. Miyoshi, Org. Magn. Reson. 1974,£.,487 ? ibid. 1975 2, 485.

    Google Scholar 

  20. D.M. Grant & B.V. Cheney, J. Am. Chem. Soc. 1967, 89, 5315.

    Article  CAS  Google Scholar 

  21. R. Maties & L. Stryer, Proc.Natl.Acad.Sci.U.S.A. 1976, 73, 2169.

    Google Scholar 

  22. See also J. Lugtenburg and coworkers, this volume.

    Google Scholar 

  23. D. D. Muccio, W. G. Copan, E. W. Abrahamson, and G. D. Mateescu, Biochemistry, submitted for publication.

    Google Scholar 

  24. B.Becher & J.Y.Cassim, Biophys.J., 1976, M,H83.

    Google Scholar 

  25. D. Oesterhelt & W. Stoeckenius, Proc. Natl Acad. Sci. USA 1973, It, 2853.

    Google Scholar 

  26. a) M. Arnaboldi, M. Motto, K. Tsujmoto, N. Balogh-Nair, K. Nakanishi, J. Am. Chem. Soc. 1979, 1J2L1, 7082. (b) B. Honig, V. Dinur, K. Nakanishi, V. Balog-Nair, M. Gawinowicz, M. Arnaboldi, M. Moto, ibid. 1979, JJLL, 7084; (c) T. Kakitani and H. Kakitani, J. Phys. Soc. Japan, 1977,Mr 1287; H. Kakitani, T. Kakitani, B. Honig and R.H. Cal- lender,Biophys.J.1982a, 12, 228a.

    Google Scholar 

  27. E.A. Dratz,W. Gartner, D. Oesterhelt, W.S. Veeman, Biophys, J, 1983, 42, 12a; see also, solution results by A. Yamaguchi, T. Unemoto, and I, Ikegami, Photochem.Photobiol. 1981, 33, 511.

    Google Scholar 

  28. D. D. Muccio, W. G. Copan, E. W. Abrahamson and G. D. Mateescu, Fed. Proc. Fed. Am. Soc. Exp. Biol. 1980, 39, 2096.

    Google Scholar 

  29. D. D. Muccio, W. G. Copan, W. W. Abrahamson and G. D. Mateescu, Org.Magn.Resn., to be published.

    Google Scholar 

  30. G. S. Harbison, J. Herzfeld, R. G. Griffin, Biochemistry 1983, 22, 1.

    Article  PubMed  CAS  Google Scholar 

  31. C. N. Rafferty, H. Shichi, Photochem. Photobiol., 1981, 11, 229.

    Article  Google Scholar 

  32. a) Y.A. Ovchinnikov, N.G. Abdulaev, M.Y. Feigina, I.D. Artamnov, A.S. Zolotarev, M.B. Costina, A.S. Bogachuk, A.I. Moroshinkov, V.I. Martinov, & A.B. Kudelin, Bioorg. Khim. 1982, 1, 1011; P.A. Hargrave, J.H. McDowell, D.R. Curtis, J. K. Wang, E. Jusczczak, S.L. Fong, J.K. Mohana Rao and P. Argos, Biophys. Struct. Mech. 1983,2,235. E.A. Dratz and P.A. Hargrave, IBS, 1983, 128. Y.A. Ovchinnikov, N.G. Abdulaev, M.Y. Feigina, A.V. Kiselev, N.A. Lovanov, FEBS Lett. 1979, 100 219; (e) H.G. Khorana, G.E. Gerber, W.C. Herlihy, C.P. Gray, R.J. Anderegg, K. Nihei, and R. Biemann Proc. Natl. Acad. Sci. USA, 1979,2£, 5046.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this chapter

Cite this chapter

Mateescu, G.D. et al. (1984). Solution and Solid State C-13 and N-15 NMR Studies of Visual Pigments and Related Systems: Rhodopsin and Bacteriorhodopsin1a . In: Sandorfy, C., Theophanides, T. (eds) Spectroscopy of Biological Molecules. NATO ASI Series, vol 139. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6490-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6490-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6492-1

  • Online ISBN: 978-94-009-6490-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics