Skip to main content

Representations of Uncertainty and Robustness Tests for Multivariable Feedback Systems

  • Chapter

Abstract

In this essay we examine several different ways in which uncertainty can be represented in a control system. In general, not all of the commonly used representations can adequately represent all possible perturbations in the plant model. Given adequate representations of uncertainty we present three kinds of robustness test. The first kind is derived from Nyquist’s stability criterion, and can be used providing the plant and perturbed plant models have the same number of unstable poles. The second is derived from an inverse Nyquist stability criterion, and can be used providing the plant and perturbed plant models have the same number of non-minimum phase zeros. The third is a combination of the other two tests, but does not require the plant and perturbed plant models to have either the same number of poles or the same number of zeros in the right-half complex plane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Doyle and G. Stein. “Multivariable feedback design: concepts for a classical modern synthesis”, IEEE Trans., 26, pp 4–16, 1981.

    MATH  Google Scholar 

  2. I. Postlethwaite, J. M. Edmunds, and A. G. J. MacFarlane. “Principal gains and principal phases in the analysis of linear multivariable feedback systems”, IEEE Trans., 26, pp 32–46, 1981.

    MathSciNet  MATH  Google Scholar 

  3. M. G. Safonov, A. J. Laub, and G. L. Hartmann. “Feedback properties of multivariable systems: the role and use of the return difference matrix”, IEEE Trans., 26, pp 47–65, 1981.

    MathSciNet  MATH  Google Scholar 

  4. J. B. Cruz, J. S. Freudenberg, and D. P. Looze, “A relationship between sensitivity and stability of multivariable feedback systems”, IEEE Trans., 26, pp 66–74, 1981.

    MATH  Google Scholar 

  5. N. A. Lehtomaki, N. R. Sandell, and M. Athans. “Robustness results in linear quadratic Gaussian based multivariable control designs”, IEEE Trans., 26, pp 75–92, 1981.

    MathSciNet  MATH  Google Scholar 

  6. J. S. Freudenberg, D. P. Looze, and J. B. Cruz. “Robustness analysis using singular value sensitivities”, Int. J. Control, pp 95–116, 1982.

    Google Scholar 

  7. B. Kouvaritakis and I. Postlethwaite. “Principal gains and phases: insensitive robustness measures for assessing the closed-loop stability property”, Proc. IEE, Pt-D, 129, pp 233–341, 1982.

    Google Scholar 

  8. I. Postlethwaite and Y. K. Foo. “Robustness with simultaneous pole and zero movement across the jω-axis”, (i) Oxford University Engineering Laboratory (OUEL) report no. 1465/83 (ii) revised, OUEL report no. 1505/83 (iii) presented at IFAC World Congress, Budapest, 1984, and submitted to Automatica.

    Google Scholar 

  9. J. C. Doyle. “Analysis of feedback systems with structured uncertainties”, Proc. IEE, Pt-D, 129, pp 242–251, 1982.

    MathSciNet  Google Scholar 

  10. M. G. Safonov and M. Athans. “Gain and phase Margin for Multiloop LQG Regulators”, IEEE Trans., 22, pp 173–179, 1977.

    MathSciNet  MATH  Google Scholar 

  11. K. M. Sobel, J. C. Chung, and E. Y. Shapiro. “Application of MIMO phase and gain margins to the evaluation of a flight control system”. Proc. ACC., pp 1286–1287, 1983.

    Google Scholar 

  12. Y. K. Foo and I. Postlethwaite. “Adequate/inadequate representations of uncertainty and their implications for robustness analysis”, Oxford University Engineering Laboratory (OUEL) report no. 1498/83, submitted for publication.

    Google Scholar 

  13. S. H. Wang and E. J. Davison. “A Minimization Algorithm for the Design of Linear Multivariable Systems”, IEEE Trans, 18, pp 220–225, 1973.

    MathSciNet  MATH  Google Scholar 

  14. G. D. Forney, Jr., “Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems”, SIAM J. Control, 13, pp 493–520, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Kailath, Linear Systems, Prentice-Hall, 1980.

    MATH  Google Scholar 

  16. M. Vidyasagar, H. Schneider and B. A. Francis. “Algebraic and topological aspects of feedback stabilization”, IEEE Trans., AC-27, pp 880–894, 1982.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Postlethwaite, I., Foo, Y.K. (1984). Representations of Uncertainty and Robustness Tests for Multivariable Feedback Systems. In: Tzafestas, S.G. (eds) Multivariable Control. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6478-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6478-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6480-8

  • Online ISBN: 978-94-009-6478-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics