Skip to main content

On the Stable Exact Model Matching and Stable Minimal Design Problems

  • Chapter
Multivariable Control

Abstract

A number of results on the module structure of the set M* of all proper rational vectors which have no poles inside a “forbidden” region Ω of the finite complex plane and which are also contained in a given rational vector space T(s) are surveyed. The structure of the various bases of M* is examined and the notion of a simple basis of M* is introduced. The existence and construction of simple proper and Ω-stable bases of T(s) having minimal MacMillan degree among all other proper bases of T(s) is established. In the light of these concepts and results a number of linear multivariable control algebraic synthesis problems are examined. Thus, necessary and sufficient conditions for the solvability of the “stable exact model matching problem” (SEMMP) are derived and the family of all “proper and stable” solutions to the SEMMP is characterized. Also the minimal design and the stable minimal design problems (MDP)(SMDP) are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.I.G. Vardulakis, D.J.N. Limebeer and N. Karcanias, “Structure and Smith-MacMillan form of a rational matrix at infinity”, Int.J. Contr., Vol. 35, pp. 701–725, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  2. Zariski and P. Sammuel, Commutative Algebra, Vol.II, Springer, 1960.

    Google Scholar 

  3. A.S. Morse, “System invariants under feedback and cascade control”, in Lecture Notes in Economics and Mathematical Systems, Vol.131, Springer (Proc.Int.Symp., Udine, Italy), pp. 61–74, 1975.

    Google Scholar 

  4. N.T. Hung and B.D.O. Anderson, “Triangularization technique for the design of multivariable control systems”, IEEE Trans.Automat. Contr., Vol.AC-24, pp. 455–460, 1979.

    Google Scholar 

  5. R.F. Gantmacher, The Theory of Matrices, Vol.1,2, Chelsea Publishing Co., New York, 1960.

    Google Scholar 

  6. A.I.G. Vardulakis and N. Karcanias, “Structure, Smith-MacMillan form and coprime MFD’s of a rational matrix inside a region P = Stu”, Int.J.Contr., Vol. 38, No. 5, pp. 927–957, 1983.

    Google Scholar 

  7. H.H. Rosenbrock, State Space and Multivariable Theory, London, Nelson, 1970.

    MATH  Google Scholar 

  8. M. Vidyasagar, “On the use of right-coprime factorizations in distributed feedback systems containing unstable subsystems”, IEEE Trans. Circuits Syst., Vol.CAS-25, pp. 916–921, 1978

    Google Scholar 

  9. C.A. Desoer, R.W. Liu, J. Murray and R. Saeks, “Feedback system design: the fractional representation approach to analysis and synthesis’; IEEE Trans.Automat.Contr., Vol.AC-25, No. 3, pp. 399–412, 1980.

    Article  MathSciNet  Google Scholar 

  10. B.A. Francis and M. Vidyasagar, “Algebraic and topological aspects of the Servo problem for lumped linear systems”, S & IS Report No. 8003, Nov. 1980.

    Google Scholar 

  11. R. Saeks and J. Murray, “Feedback system design: the tracking and disturbance rejection problems”, IEEE Trans.Automat.Contr., Vol. AC-26, pp. 203–217, 1981.

    Google Scholar 

  12. M. Vidyasagar, H. Schneider and B.A. Francis, “Algebraic and topological aspects of feedback stabilization”, IEEE Trans.Automat. Contr., Vol.AC-27, pp. 880–894, 1982.

    Google Scholar 

  13. R. Saeks and J. Murray, “Fractional representation, algebraic geometry and the simultaneous stabilization problem”, IEEE Trans. Automat.Contr., Vol.Ac-27, pp. 895–903, 1982.

    Google Scholar 

  14. M. Vidyasagar and N. Viswanadham, “Algebraic design for reliable stabilization”, IEEE Trans.Automat.Contr., Vol.AC-27, pp. 10851095, 1982.

    Google Scholar 

  15. S. MacLane and G. Birkhof, Algebra, MacMillan Pub.Co.Inc., New York, 1979.

    Google Scholar 

  16. A.I.G. Vardulakis and N. Karcanias, “Classification of proper bases of rational vector spaces: minimal MacMillan degree bases”, Int.J.Contr., Vol.38, No. 4, pp. 779–809.

    Google Scholar 

  17. G. Verghese and T. Kailath, “Rational matrix structure”, IEEE Trans.Automat.Contr., Vol.Ac-26, pp. 434–439, 1981.

    Google Scholar 

  18. G.D.Forney, “Minimal bases of rational vector spaces with applications to multivariable linear systems”, SIAM J. Control, Vol. 13, pp. 943–520, 1975.

    Google Scholar 

  19. G. Verghese, Ph.D. Dissertation, Electrical Engineering Department, Stanford University, California, U.S.A., 1978.

    Google Scholar 

  20. S. Kung and T. Kailath, Some notes on valuation theory in linear systems, IEEE Conf. on Decision and Control, San Diego, U.S.A., 1979.

    Google Scholar 

  21. G. Verghese, P. Van Dooren and T. Kailath, Properties of the system matrix of a generalised state-space system, In.T.Contr., Vol. 30, pp. 235–243, 1979.

    MATH  Google Scholar 

  22. W.A. Wolovich, Linear Multivariable Systems, Springer, New York, 1974.

    Book  MATH  Google Scholar 

  23. H.H. Rosenbrock and G.E. Hayton, “Dynamical indices of a transfer function matrix”, Int.J.Contr., Vol. 9, pp. 97–106, 1974.

    MathSciNet  Google Scholar 

  24. W.A. Wolovich, “The determination of state-space representations for linear multivariable systems”, Automatica, Vol. 9, pp. 97–106, 1973.

    Article  MATH  Google Scholar 

  25. S.H. Wang and E.J. Davison, A minimization algorithm for the design of linear multivariable systems, IEEE Trans.Automat.Contr., Vol.AC-18, pp. 220–225, 1973.

    Google Scholar 

  26. T. Kousiouris, Ph.D. Thesis, UMIST Manchester, U.K., 1977.

    Google Scholar 

  27. M.L.J. Hautus and M. Heymann, “Linear feedback-an algebraic approach”, SIAM J. Control and Optimization, Vol.16, pp., 1978.

    Google Scholar 

  28. J. Haumter and M. Heymann, “Causal factorization and linear feedback”, SIAM J.Control and Optimization, Vol.19, pp., 1981.

    Google Scholar 

  29. B.C. Moore and L.M. Silvermann, “Model matching by state feedback and dynamic compensation”, IEEE Trans.Automat.Contr., Vol.AC-17, pp. 491–497, 1972.

    Google Scholar 

  30. B.D.O. Anderson and R.W. Scott, “Parametric solution of the stable exact model matching problem”, IEEE Trans.Automat.Contr., Vol. AC-22, pp. 137–138, 1977.

    Google Scholar 

  31. W.A. Wolovich, P. Antsaklis and H. Elliot, “On the stability of solutions to the minimal and nonminimal design problems”, IEEE Trans.Automat.Contr., Vol.AC-22, pp. 88–94, 1977.

    Google Scholar 

  32. R.W. Scott and B.D.O. Anderson, “Least order, stable solution of the exact model matching problem”, Automatica, Vol. 1 4, pp. 481–492, 1978.

    Article  Google Scholar 

  33. W.A. Wolovich, “Equivalence and invariants in linear multivariable systems”, Proc. 1974 JACC, pp.177–185.

    Google Scholar 

  34. L. Pernebo, An algebraic theory for the design of controllers for linear multivariable systems, Parts I and II, IEEE Trans.Automat. Contr., Vol.AC-26, pp.171–190.

    Google Scholar 

  35. A.I.G. Vardulakis and N. Karcanias,“Proper and stable, minimal MacMillan degree bases of rational vector spaces”, To appear in IEEE Trans.Automat.Contr., Nov. 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Vardulakis, A.I.G., Karcanias, N. (1984). On the Stable Exact Model Matching and Stable Minimal Design Problems. In: Tzafestas, S.G. (eds) Multivariable Control. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6478-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6478-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6480-8

  • Online ISBN: 978-94-009-6478-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics