Skip to main content

The Motion of Compact Bodies and Gravitational Radiation

  • Chapter
General Relativity and Gravitation

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 9))

Abstract

We consider the problem of the gravitational interaction of two compact bodies (neutron stars or black holes). We outline a new method where one matches an “external” gravitational field, obtained by iterating a Post Minkowskian Approximation scheme, to the field near each compact body. Equations of motion for each body are derived from the vacuum field equations by means of an Einstein-Infeld-Hoffmann-Kerr-like approach simplified by the use of complex analytic continuation. Because of the “no incoming radiation” condition incorporated in the Post Minkowskian Approximation scheme these equations of motion have a retarded functional form. A slow motion expansion allows one to transform these equations into ordinary differential equations up to the second-and-a-half-Post-Newtonian order. Solving the latter equations, with the help of a second-Post-Newtonian generalized Lagrangian, we find a secular acceleration of the mean orbital longitude of each member of a gravitationally bound binary system. This kinematical behaviour agrees with the phenomena observed in the Hulse-Taylor pulsar: PSR 1913+16.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.L.: 1980, “New derivations of the quadrupole formulas and balance equations for gravitationally bound systems”, Phys. Rev. Lett., 45, pp. 1745–1748.

    Article  MathSciNet  ADS  Google Scholar 

  • Bel, L., Damour, T., Deruelle N., Ibañez J., and Martin J.:1981, “Poincaré invariant gravitational field and equations of motion of two point like objects: the post-linear approximation of General Relativity”, Gen. Rel. Grav., 13, pp. 963–1004.

    Article  ADS  Google Scholar 

  • Bel, L. and Fustero, X.: 1976, “Mécanique relativiste prédictive des systèmes de N particules”, Ann. I.H.P., A25, pp. 411–436.

    Google Scholar 

  • Bertotti, B., and Plebanski, J.: 1960, “Theory of gravitational perturbations in the fast motion approximation”, Ann. Phys., 11, pp. 169–200.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Burke, W.L.: 1971, “Gravitational radiation damping of slowly moving systems calculated using matched asymptotic expansions”, J. Math. Phys., 12, pp. 401–418.

    Article  ADS  Google Scholar 

  • Campolattaro, A., and Thorne, K.S.: 1970, “Non radial pulsation of general relativistic stellar models. V. analytic analysis for 1=1”, Ap. J., 159, pp. 847–858.

    Article  ADS  Google Scholar 

  • Damour, T.: 1982, “Problème des deux corps et freinage de rayonnement en relativité générale”, C.R. Acad. Sci. Paris, 294, série II, pp. 1355–1357.

    MathSciNet  Google Scholar 

  • Damour, T.: 1983a, “Gravitational radiation and the motion of compact bodies”, in N. Deruelle and T. Piran (eds), Gravitational radiation, North Holland, Amsterdam, pp. 59–144.

    Google Scholar 

  • Damour, T.: 1983b, “Radiation damping in General Relativity”, in Hu Ning (ed.), Proceedings of the Third Marcel Grossmann Meeting, Science Press, Peking, (in press).

    Google Scholar 

  • Damour, T.: 1983c, “Gravitational radiation reaction in the binary pulsar and the quadrupole formula controversy”, Phys. Rev. Lett., 51, pp. 1019–1021.

    Article  ADS  Google Scholar 

  • Damour, T. and Deruelle, N.: 1981a, “Radiation reaction and angular momentum loss in small angle gravitational scattering”, Phys. Lett., 87A, pp. 81–84.

    ADS  Google Scholar 

  • Damour, T. and Deruelle, N.: 1981b, “Lagrangien généralisé de deux masses ponctuelles, à l’approximation post-post-newtonienne de la relativité générale”, C.R. Acad. Sci. Paris, 293, série II, pp. 537–540.

    MathSciNet  Google Scholar 

  • D’Eath, P.D.: 1975, “The interaction of two black holes in the slow motion limit”, Phys. Rev., D12, pp. 2183–2199.

    ADS  Google Scholar 

  • Demianski, M. and Grishchuk, L.P.: 1974, “Note on the motion of black holes”, Gen. Rel. Grav., 5, pp. 673–679.

    Article  ADS  Google Scholar 

  • Deruelle, N., and Piran, T. (eds): 1983, Gravitational Radiation, (Les Houches, 1982) North Holland, Amsterdam.

    Google Scholar 

  • Ehlers, J.: 1983, “Weak field approximations and equations of motion in General Relativity”, updated version of the Max Planck Institute Report: MPI-PAE/Astro 138, 1977.

    Google Scholar 

  • Einstein, A.: 1915, “Erklärung der Perihelbewegung des Merkur aus der Allgemeinen Relativitäts theorie”, Sitzungsber. d.K. Preuss. Akad. d. Wiss., II, pp. 831–839. (18 November).

    Google Scholar 

  • Einstein, A., Infeld L., and Hoffmann, B.: 1938, “The gravitational equations and the problem of motion”, Ann. Math., 39, pp. 65–100.

    Article  MathSciNet  Google Scholar 

  • Fock, V.A.: 1959, Theory of Space, Time and Gravitation, Pergamon, London, section 92.

    MATH  Google Scholar 

  • Havas, P. and Goldberg, J.N.: 1962, “Lorentz-invariant equations of motion of point masses in the General Theory of Relativity”, Phys. Rev., 128, pp. 398–414.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kates, R.E.: 1980, “Gravitational radiation damping of a binary system containing compact objects calculated using matched asymptotic expansions”, Phys. Rev., 22, pp. 1871–1878.

    Article  MathSciNet  ADS  Google Scholar 

  • Kerr, R.P.: 1959, “The Lorentz-covariant approximation method in General Relativity”, Nuovo Cim., 13, pp. 469–502.

    Article  MathSciNet  MATH  Google Scholar 

  • Kovács, S.J. and Thorne, K.S.: 1977, “The generation of gravitational waves. III. Derivation of bremsstrahlung formulae”., Ap. J., 217, pp.252–280.

    Article  ADS  Google Scholar 

  • Manasse, F.K.: 1963, “Distortion in the metric of a small center of gravitational attraction due to its proximity to a very large mass”, J. Math. Phys., 4, pp. 746–761.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Peters, P.C. and Mathews, J.: 1963, “Gravitational radiation from point masses in a Keplerian orbit”, Phys. Rev., 131, pp. 435–440.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Regge, T. and Wheeler, J.A.: 1957, “Stability of a Schwarzschild singularity”, Phys. Rev., 108, pp. 1063–1069.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Riesz, M.: 1949, “L’intégrale de Riemann-Liouville et le problème de Cauchy”, Acta Math., 81, pp. 1–223.

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, J.H., Fowler, L.A. and Me Culloch, P.M.: 1979, “Measurements of general relativistic effects in the binary pulsar PSR 1913+16”, Nature, 211, pp. 437–440.

    Article  ADS  Google Scholar 

  • Taylor, J.H. and Weisberg, J.M.: 1982, “A new test of General Relativity: gravitational radiation and the binary pulsar PSR 1913+16”, Ap. J., 253, pp. 908–920.

    Article  ADS  Google Scholar 

  • Thorne, K.S.: 1969, “Nonradial pulsations of general relativistic stellar models. IV. The weak field limit”, Ap. J., 158, pp. 997–1019.

    Article  ADS  Google Scholar 

  • Wagoner, R.V.: 1975, “Test for the existence of gravitational radiation”, Ap. J., 196, pp. L63-L65.

    Article  ADS  Google Scholar 

  • Walker, M. and Will, C.M.: 1980, “Gravitational radiation quadrupole formula is valid for gravitationally interacting systems”, Phys. Rev. Lett., 45, pp. 1741–1744.

    Article  MathSciNet  ADS  Google Scholar 

  • Weisberg, J.M. and Taylor, J.H.: 1981, “Gravitational radiation from an orbiting pulsar”, Gen. Ret. Grav., 13, pp. 1–6.

    ADS  Google Scholar 

  • Westpfahl, K. and Hoyler, H.: 1980, “Gravitational bremsstrahlung in post-linear fast-motion approximation”, Lett. Nuovo Cim., 27, pp.581–585.

    Article  MathSciNet  Google Scholar 

  • Will, C.M.: 1981, Theory and experiment in gravitational physics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Will, C.M. and Eardley, D.M.: 1977, “Dipole gravitational radiation in Rosen’s theory of gravity: observable effects in the binary system PSR 1913+16”, Ap. J., 212, pp. L91-L94.

    Article  ADS  Google Scholar 

  • Zerilli, F.J.: 1970, “Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics”, Phys. Rev., D2, pp. 2141–2160.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this chapter

Cite this chapter

Damour, T. (1984). The Motion of Compact Bodies and Gravitational Radiation. In: Bertotti, B., de Felice, F., Pascolini, A. (eds) General Relativity and Gravitation. Fundamental Theories of Physics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6469-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6469-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6471-6

  • Online ISBN: 978-94-009-6469-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics