Skip to main content

Computational Relativity: Numerical and Algebraic Approaches Report of Workshop A4

  • Chapter
General Relativity and Gravitation

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 9))

Abstract

The current use of computers in general relativity was reviewed at GR10. Today several groups have working codes which can calculate the coupled general relativity/hydrodynamics equations in two spatial dimensions plus time. These codes are compared and a critical review is made of the areas needing improvement. The potential uses of numerical relativity are discussed. In some situations the gravitational field can be chosen to be an analytically known solution, and hydrodynamics can be done in that background field. Regge calculus is still in its infancy numerically, but interesting new work has been done. Algebraic computing is becoming a mature technology, with the emphasis moving toward making these powerful software tools available to those relativists without previous computer training.

Alfred P. Sloan Fellow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bertotti, B., de Felice, F., and Pascolini, A. (eds): 1983, 10th International Conference on General Relativity and Gravitation. Contributed Papers, Vols 1–2, CNR, Roma.

    Google Scholar 

  • Brewin, L.: 1983, “Computer generated solutions using Regge calculus”, p. 427.

    Google Scholar 

  • Bicknell, G.V., and Gingold, R.A.: 1983, “Tidal detonation of stars by black holes”, p. 690.

    Google Scholar 

  • Hawley, J., Smarr, L., and Wilson, J.R.: 1983, “Numerical simulation of flat disks around black holes”, p. 709.

    Google Scholar 

  • Lanza, A., Miller, J.C., and Motta, S.: 1983, “Formation and damping of relativistic strong shocks”, p. 436.

    Google Scholar 

  • Luminet, J.P., and Marck, J.A.: 1983, “Tidal effects in Kerr geometry”, p. 438.

    Google Scholar 

  • Maallum, M.A.H.: 1983a, “Proposed format for recording the invariant characterisation of exact solutions”, p. 301.

    Google Scholar 

  • Miller, J.C.: 1983, “Non-axisymmetric instabilities in gravitational collapse”, p. 443.

    Google Scholar 

  • Williams, R.M., and Ellis, G.F.R.: 1983, “Observational results from Regge calculus”, p. 451.

    Google Scholar 

Other References

  • Brill, D.R.: 1959, “On the Positive Definite Mass of the Bondi-Weber-Wheeler Time-Symmetric Gravitational Waves”, Ann. Phys., 7, 466.

    Article  MathSciNet  ADS  Google Scholar 

  • Centrella, J. and Wilson, J. R.,: 1983a, “Planar numerical cosmology. I. The differential equations”, Astrophys. J., 273, 428.

    Article  ADS  Google Scholar 

  • Centrella, J., and Wilson, J.R.: 1983b, “Planar Cosmology. II. The difference equations and numerical tests”, University of Illinois, Astronomy preprint 83–11.

    Google Scholar 

  • Collins, P.A., and Williams, R.M.: 1973, “Dynamics of the Friedmann Universe Using Regge Calculus”, Phys. Rev., D7, 965.

    ADS  Google Scholar 

  • Eardley, D.M.: 1979, “Global problems in numerical relativity”, in L. Smarr (ed.), Sources of Gravitational Radiation, Cambridge University Press, Cambridge, pp. 127–138.

    Google Scholar 

  • Eardley, D.M., and Smarr, L.: 1979, “Time functions in numerical relativity: marginally bound dust collapse”, Phys. Rev., D19, 2239.

    MathSciNet  ADS  Google Scholar 

  • Eppley, K.: 1979, “Pure gravitational waves”, in L. Smarr (ed.), Sources of Gravitational Radiation, Cambridge University Press, Cambridge, pp.275–292.

    Google Scholar 

  • Estabrook, F., Wahlquist, H., Christensen, S., Ditt, B., Smarr, L., and Tsiang, E.: 1973, “Maximally Slicing a Black Hole”, Phys. Rev., D7, 2814.

    ADS  Google Scholar 

  • Evans, C.: 1984, “A method for numerical simulation of gravitational collapse and gravitational radiation generation”, in J. Centrella, R. Bowers, J. LeBlanc, and M. LeBlanc (eds), Numerical Astrophysics: A Festschrift in Honor of James R. Wilson.

    Google Scholar 

  • Evans, C., Smarr, L., and Wilson, J.R.: 1984, “Numerical relativistic collapse and collisions with spatial time slices”, in K.-H.A. Winkler, and M.L. Norman (eds), Radiation Hydrodynamics, Reiael, Dordrecht.

    Google Scholar 

  • Geroch, R.: 1971, “A Method of Generating Solutions of Einstein’s Equations”, J. Math. Phys., 12, 918.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Haugan, M.P., Shapiro, S.L., and Wasserman, I.: 1982, “The soppression of gravitational radiation from finite-size stars falling into black holes”, Astrophys. J., 257, 283.

    Article  ADS  Google Scholar 

  • Hawley, J.F., Smarr, L., and Wilson, J.R.: 1983b, “A numerical study of nonspherical black hole accretion. I. Equations and test particles”, University of Illinois Astronomy preprint 83–9, to appear in Astrophys. J.

    Google Scholar 

  • Hawley, J.F., Smarr, L., and Wilson, J.R.: 1983c, “A numerical study of nonspherical black hole accretion. II. Finite differencing and code calibration”, University of Illinois, Astronomy preprint, to appear in Astrophys. J. Suppl.

    Google Scholar 

  • Isaacson, R.A., Wellings, J.S., and Winicour, J.: 1983, “Null cone computation of gravitational radiation”, J. Math. Phys., 24, 1824.

    Article  MathSciNet  ADS  Google Scholar 

  • Maallum, M.A.H.: 1983b, “Classifying metrics in theory and practice”, in V. De Sabbata, and E. Schmutzer (eds), Unified Field Theory of more than 4 Dimension Including Exact Solutions, World Scientific Publishing, Singapore, p. 352.

    Google Scholar 

  • May, M.M., and White, R.H.: 1967, “Stellar Dynamics and Gravitational Collapse”, Methods Comput. Phys., 7, 219.

    Google Scholar 

  • Nakamura, T.: 1981, “General Relativistic Collapse of Axially Symmetric Stars Leading to the Formation of Rotating Black Holes”, Prog. Theor. Phys., 65, 1876.

    Article  ADS  Google Scholar 

  • Nakamura, T.: 1983, “General relativistic collapse of rotating stars”, to appear in the proceedings of the 11th Texas Symposium on Relativistic Astrophysics.

    Google Scholar 

  • Piran, T.: 1980, “Numerical codes for cylindrical general relativistic systems”, J. Comput. Phys., 35, 254.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Press, W.H.: 1971, “Long wave trains of gravitational waves from a vibrating black hole”; Astrophys. J. Lett., 170, L105.

    Article  ADS  Google Scholar 

  • Shapiro, S. L., and Teukolsky, S. A.: 1980, “Gravitational collapse to neutron stars and black holes: computers generation of spherical spacetimes”, Astrophys. J., 235, 199.

    Article  ADS  Google Scholar 

  • Smarr, L.s 1979, “Gauge condition, radiation formulae and the two black hole collision”, in L. Smarr (ed.), Sources of Gravitational Radiation, Cambridge University Press, Cambridge, pp.245–274.

    Google Scholar 

  • Smarr, L., and Hawley, J.F.: 1983, “General Relativistic Hydrodynamics and accretion physics: a numerical approach”, to appear in the Proceedings of the Toulouse Workshop on Gravitational Collapse.

    Google Scholar 

  • Stewart, J.M., and Friedrich, H.: 1982, “Numerical Relativity. I. The characteristic initial value problem”, Proc. Roy. Soc., A384, 427.

    MathSciNet  ADS  Google Scholar 

  • Wilson, J.R.: 1979, “A numerical method for relativistic hydrodynamics”, in L. Smarr (ed.), Sources of Gravitational Radiation, Cambridge University Press, Cambridge, pp. 423–446.

    Google Scholar 

  • Winkler, K.-H.A., and Norman, M.L.: 1984, “WH80s: Numerical Radiation Hydrodynamics”, to appear in M.L. Norman, and K.-H.A. Winkler (eds), Radiation Hydrodynamics, Reidel, Dordrecht.

    Google Scholar 

  • York, J.W., Jr.: 1979: “Kinematics and dynamics of general relativity”, in L. Smarr (ed.), Sources of Gravitational Radiation, Cambridge University Press, Cambridge, pp. 83–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this chapter

Cite this chapter

Smarr, L. (1984). Computational Relativity: Numerical and Algebraic Approaches Report of Workshop A4. In: Bertotti, B., de Felice, F., Pascolini, A. (eds) General Relativity and Gravitation. Fundamental Theories of Physics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6469-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6469-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6471-6

  • Online ISBN: 978-94-009-6469-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics