Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 133))

Abstract

In quantum chemical research a considerable fraction of the effort is devoted to improving the computational strategy. The work in this field can basically be characterized as aiming at a single goal: how can larger systems be made more accessible to increasingly sophisticated methods? It is evident that the development of modern computer hardware and software has greatly accelerated progress towards this goal. This development, however, has not been uniform: rather, different functions of the average computer have improved in performance by different degrees. In order to design optimally efficient computational methods, such changes in computer architecture and performance profile must be carefully analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Almlöf, K. Korsell and K. Faegri jr., J. Comput. Chem., 3, 385 (1982).

    Article  Google Scholar 

  2. H.P. Lüthi, J.H. Ammeter, J. Almlöf and K. Faegri Jr., J. Chem. Phys., 77, 2002 (1982);

    Article  Google Scholar 

  3. J. Almlöf and K. Faegri jr., J. Amer. Chem. Soc., 105, 965 (1983).

    Google Scholar 

  4. V.R. Saunders and M.F. Guest, Comput. Phys. Commun., 26, 389 (1982).

    Article  CAS  Google Scholar 

  5. L.E. McMurchie and E.R. Davidson, J. Comput. Phys., 26, 218 (1978).

    Article  CAS  Google Scholar 

  6. D. Hegarty and G. van der Velde, Int. J. Quantum Chem., 23, 1135 (1983).

    Article  CAS  Google Scholar 

  7. M. Dupuis, J. Rys and H.F. King, J. Chem. Phys., 65, 111, (1976).

    Article  CAS  Google Scholar 

  8. P. Pulay, Chem. Phys. Lett., 73, 393 (1980)

    Article  CAS  Google Scholar 

  9. P. Pulay, J. Comput. Chem., 3, 556 (1982).

    Article  CAS  Google Scholar 

  10. G.B. Bacskay, Chem. Phys., 61, 385 (1981).

    Article  CAS  Google Scholar 

  11. P.R. Taylor, to be published.

    Google Scholar 

  12. P.D. Dacre, Chem. Phys. Lett., 7, 47 (1970).

    Article  CAS  Google Scholar 

  13. M. Elder, Int. J. Quantum Chem., 7, 75 (1973).

    Article  CAS  Google Scholar 

  14. M. Dupuis and H.F. King, Int. J. Quantum Chem., 11, 613 (1977).

    Article  CAS  Google Scholar 

  15. R.C. Raffenetti, J. Chem. Phys., 58, 4452 (1973).

    Article  CAS  Google Scholar 

  16. G. Karlström, J. Comput. Chem., 2, 33 (1981).

    Article  Google Scholar 

  17. E.R. Davidson, J. Chem. Phys., 62, 400 (1975).

    Article  CAS  Google Scholar 

  18. H.-J. Werner and W. Meyer, J. Chem. Phys., 73, 2342 (1980).

    Article  CAS  Google Scholar 

  19. P.E.M. Siegbahn, J. Almlöf, A. Heiberg and B.O. Roos, J. Chem. Phys., 74, 2384 (1981).

    Article  CAS  Google Scholar 

  20. P. Jgrgensen, J. Olsen and D.L. Yeager, J. Chem. Phys., 75, 5802 (1981).

    Article  Google Scholar 

  21. J.A. Pople, R. Krishnan, H.B. Schlegel and J.S. Binkley, Int. J. Quantum Chem. Symp., 13, 225 (1979).

    CAS  Google Scholar 

  22. P.R. Taylor, Int. J. Quantum Chem., in press.

    Google Scholar 

  23. B.O. Roos, P.R. Taylor and P. E.M. Siegbahn, Chem. Phys., 48, 157 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this chapter

Cite this chapter

Almlöf, J., Taylors, P.R. (1984). Computational Aspects of Direct SCF and MCSCF Methods. In: Dykstra, C.E. (eds) Advanced Theories and Computational Approaches to the Electronic Structure of Molecules. NATO ASI Series, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6451-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6451-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6453-2

  • Online ISBN: 978-94-009-6451-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics