Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 133))

Abstract

The generalized valence bond (GVB), fully optimized reaction space (FORS) and complete active space self-consistent field (CASSCF) methods are discussed. All of these approaches in their simplest form provide a multiconfiguration model for the electronic structure of molecules based on a well defined set of valence orbitals. As such they correct for a major deficiency in the Hartree-Fock model. While the GVB, FORS, and CASSCF methods permit the use of a larger orbital set, a scheme which provides a consistent description of molecular systems with an expanded set has yet to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goddard, III, W. A., 1967, Phys. Rev. 157, pp. 81–93;

    Article  CAS  Google Scholar 

  2. Ladner, R. C. and Goddard, III, W. A., 1969, J. Chem. Phys. 51, pp. 1073–1087;

    Article  CAS  Google Scholar 

  3. Hunt, W. J., Hay, P. J. and Goddard, III, W. A., 1972, J. Chem. Phys. 57, 738–748.

    Article  Google Scholar 

  4. Ruedenberg, K. and Sundberg, K. R., 1976, in Quantum Science, ed. Calais, J-L., Goscinski, O., Linderberg, J. and Ohrn, Y., Plenum, Publishing Corporation, New York, pp. 505–515;

    Google Scholar 

  5. Ruedenberg, K., Schmidt, M. W., Gilbert, M. M. and Elbert, S. L., 1982, Chem. Phys. 71, pp. 41–49;

    Article  CAS  Google Scholar 

  6. Ruedenberg, K., Schmidt, M. W. and Gilbert, M. M., 1982, Chem. Phys. 71, pp. 51–64;

    Article  CAS  Google Scholar 

  7. Ruedenberg, K., Schmidt, M. W., Gilbert, M. M. and Elbert, S. T., 1982, Chem. Phys. 71, pp. 65–78.

    Article  CAS  Google Scholar 

  8. Roos, B. O., Taylor P. R. and Siegbahn, P. E. M., 1980, Chem. Phys. 48, pp. 157–173;

    Article  CAS  Google Scholar 

  9. Roos, B. O., 1980, Intern. J. Quantum Chem.: Quantum Chemistry Symposium 14, pp. 175–189.

    CAS  Google Scholar 

  10. See, e.g., the work summarized in Wahl, A. C. and Das, G., 1977, “The Multiconfiguration Self-consistent Field Method,” in Methods in Electronic Structure Theory, ed. Schaefer, III, H. F., Plenum Press, New York, chap. 3.

    Google Scholar 

  11. Hurley, A. C., Lennard-Jones, J. and Pople, J. A., 1953, Proc. Roy. Soc. (London) A220, pp. 446–455.

    Article  CAS  Google Scholar 

  12. Miller, K. J. and Ruedenberg, K., 1968, J. Chem. Phys. 48, pp. 3414–3443;

    Article  CAS  Google Scholar 

  13. Silver, D. M., Mehler, E. L. and Ruedenberg, K., 1970, J. Chem. Phys. 52, pp. 1174–1180;

    Article  CAS  Google Scholar 

  14. Mehler, E. L., Ruedenberg, K. and Silver, D. M., 1970, J. Chem. Phys. 52, pp. 1181–1205.

    Article  CAS  Google Scholar 

  15. Lie, G. C. and Clementi, E., 1974, J. Chem. Phys. 60, pp. 1275–1288;

    Article  CAS  Google Scholar 

  16. Lie, G. C. and Clementi, E., 1974, J. Chem. Phys. 60, pp. 1288–1296.

    Article  CAS  Google Scholar 

  17. Dunning, Jr., T. H., unpublished; see also Dunning, Jr., T. H., 1976, J. Chem. Phys. 65, pp. 3854–3862.

    Article  CAS  Google Scholar 

  18. Cade, P. E. and Huo, W. M., 1967, J. Chem. Phys. 47, pp. 614–648.

    Article  CAS  Google Scholar 

  19. DiLonardo, G. and Douglas, A. E., 1973, Can. J. Phys. 51, pp. 434–445.

    Article  CAS  Google Scholar 

  20. Bobrowicz, F. W., 1974, Ph.D. Thesis, California Institute of Technology, Pasadena, California

    Google Scholar 

  21. Moss, B. J., Bobrowicz, F. W. and Goddard, III, W. A., 1975, J. Chem. Phys. 63, pp. 4632–4639.

    Article  CAS  Google Scholar 

  22. Bobrowicz, F. W. and Goddard, III, W. A., 1977, “The Self-Consistent Field Equations for Generalized Valence Bond and Open-Shell Hartree-Fock Wave Functions,” in Methods in Electronic Structure Theory, ed. Schaefer, III, H. F., Plenum Press, New York, chap. 4.

    Google Scholar 

  23. Dunning, Jr., T. H., Cartwright, D. C., Hunt, W. J., Hay, P. J. and Bobrowicz, F. W., 1976, J. Chem. Phys. 64, pp. 4755–4766.

    Article  CAS  Google Scholar 

  24. Rosen, B., 1970, Spectroscopic Data Relative to Diatomic Molecules, Pergamon, New York.

    Google Scholar 

  25. Levin, G. and Goddard, III, W. A., 1975, J. Am. Chem. Soc. 97, pp. 1649–1656;

    Article  CAS  Google Scholar 

  26. Voter, A. F. and Goddard, III, W. A., 1981, Chem. Phys. 57, pp. 253–25

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this chapter

Cite this chapter

Dunning, T.H. (1984). Multiconfiguration Wavefunctions for Molecules: Current Approaches. In: Dykstra, C.E. (eds) Advanced Theories and Computational Approaches to the Electronic Structure of Molecules. NATO ASI Series, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6451-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6451-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6453-2

  • Online ISBN: 978-94-009-6451-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics