Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 132))

Abstract

These notes form a fairly standard introduction to Wiener integration on ℝn and on Riemannian manifolds. Feynman path integrals for non-relativistic quantum mechanics are also considered and compared to Wiener integrals. The basic approach is via cylinder set measures, Gaussian measures, and abstract Wiener spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albeverio, S., Blanchard, Ph. & Høegh-Krohn, R. (1982). Feynman path integrals and the trace formula for the Sahrődinger operators. Comm. Math. Phys., 83, no. 1, pp. 49–76.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Albeverio, S.A. & Høegh-Krohn, R.J. (1976). Mathematical Theory of Feynman Path Integrals. Lecture Notes in Mathematics 523. Berlin, Heidelberg, New York-Springer-Verlag.

    Google Scholar 

  3. Asorey, M. & Mitter, P.K. (1981). Regularized, continuum Yang-Mills process and Feynman-Kac functional integral. Commun. Math. Phys. 80, pp. 43–58.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Cooper, F. & Freedman, B. (1983). Aspects of supersymmetric quantum mechanics. Annals of Phys., 146, pp. 262–288.

    Article  MathSciNet  ADS  Google Scholar 

  5. De Angelis, G.F., Jona-Lavinio, G., Sirugue M. (1983). Probabilistic solution of Pauli type equations. J. Phys. A. Math. Gen. 16, pp. 2433–2444.

    Article  ADS  MATH  Google Scholar 

  6. DeWitt, B.S. Supermanifolds. Cambridge University Press, in press.

    Google Scholar 

  7. DeWitt-Morette, C. & Elworthy, K.D. (1979). Stochastic differential equations: lecture notes and problems. Armadillo Press, Centre for Relativity, University of Texas, Austin, Texas. Revised version in Stochastics ifferential Equations, Materialien XXIII, Schwerpunkt Mathematisierung, Universität Bielefeld, 4800 Bielefeld 1, West Germany.

    Google Scholar 

  8. DeWitt Morette, C. & Elworthy, K.D. (1981), editors. New Stochastic Methods in Physics. Physics Reports, 77, no. 3.

    Google Scholar 

  9. DeWitt-Morette, C., Elworthy, K.D., Nelson, B.L., & Sammelman, G.S. (1980). A stochastic scheme for constructing solutions of the Schrődinger equation. Ann. Inst. Henri Poincaré, Section A, 32, no. 4, pp. 327–341.

    MathSciNet  Google Scholar 

  10. DeWitt-Morette, C., Maheshwari, A., & Nelson, B. (1979). Path integration in non-relativistic quantum mechanics. Physics Reports, 50, no.5, pp. 255–372. Amsterdam: North-Holland.

    Google Scholar 

  11. Dudley, R.M. (1974). Recession of some relativistic Markov processes. Rocky Mountain J. of Math., 4, no. 3, pp. 401–406.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dudley, R.M., Feldman, J. & LeCam, L. (1971). On seminorms and probabilities, and abstract Wiener spaces. Ann. Math. 93, pp. 390–408.

    Article  MathSciNet  MATH  Google Scholar 

  13. Elworthy, K.D. (1975). Measures on infinite dimensional manifolds. In Functional Integration and its Applications, ed. A.M. Arthurs, pp. 60–68. Oxford: Oxford University Press.

    Google Scholar 

  14. Elworthy, K.D. (1981). Stochastic methods and differential geometry. In Seminaire Bourbaki vol. 1980/81. Exposés 561–578, pp. 95–110. Lecture Notes in Maths., 901, Berlin, Heidelberg, New York: Springer-Verlag.

    Chapter  Google Scholar 

  15. Elworthy, K.D. (1982). Stochastic Differential Equations on Manifolds. London Math. Soc. Lecture notes in Mathematics. Cambridge.

    Google Scholar 

  16. Elworthy, K.D. & Truman, A. (1981). Classical mechanics, the diffusion (heat) equation and the Schrődinger equation on a Riemannian manifold. J. Math. Phys. 22, no. 10, pp. 2144–2166.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Elworthy, K.D. & Truman, A. (1982). A Cameron-Martin formula for Feynman Integrals (the origin of the Maslov indices). In Mathematical Problems in Theoretical Physics. Proc. of VIth Int. Conf. on Mathematical Physics, Berlin (West) August, 1981, ed. R. Schrader et al. pp. 288–264. Lecture Notes in Physics 153. Berlin, Heidelberg, New-York: Springer-Verlag.

    Chapter  Google Scholar 

  18. Elworthy, K.D. & Truman, A. (1983). Feynman maps, Cameron-Martin formulae and anharmonic oscillators. Preprint.

    Google Scholar 

  19. Feynman, R.P. & Hibbs, A.R. (1965). Quantum Mechanics and Path Integrals. New York: McGraw-Hill.

    MATH  Google Scholar 

  20. Fujiwara, D. (1980). Remarks on convergence of the Feynman path integrals. Duke Math. J., 47, no. 3, pp. 559–600.

    Article  MathSciNet  MATH  Google Scholar 

  21. Gaveau, B. & Trauber, P. (1981). Une construction de la quantification euclidienne du Champ de Yang-Mills régularisé. J. Funct. Anal. 42, pp. 356–367.

    Article  MathSciNet  MATH  Google Scholar 

  22. Goldberg, S.I. (1962). Curvature and Homology. New York, London: Academic Press.

    MATH  Google Scholar 

  23. Gowrisankaran, C. (1972). Quasi-invariant Radon measures on groups. Proc. Amer. Math. Soc., 35, no. 2, pp. 503–506.

    Article  MathSciNet  MATH  Google Scholar 

  24. Klein, A., & Perez J.F. (1983). Supersymmetry and dimensional reduction: a non-perturbative proof. Phys. Letters B. 125, no. 6, pp. 473–475.

    Article  MathSciNet  ADS  Google Scholar 

  25. Kobayashi, S. (1957). Theory of connections. Annali di Mat., 43, pp. 119–194.

    Article  Google Scholar 

  26. Kuo, H.-H. (1975). Gaussian measures in Banach spaces. Lecture Notes in Maths. 463. Berlin, Heidelberg, New York: Springer-Verlag.

    MATH  Google Scholar 

  27. Reed, M. & Simon, B. (1972). Methods of Modern Mathematical Physics I: Functional Analysis. New York, San Francisco, London: Academic Press.

    MATH  Google Scholar 

  28. Schwartz, L. (1971). Probabilités cylindriques et applications radonifiantes. J. Fac. Sci. Univ. Tokyo Sect. 1, 18, no. 2, pp. 139–286.

    MATH  Google Scholar 

  29. Segal, I.E. (1965). Algebraic Integration Theory. Bull. Am. Math. Soc., 71, pp. 419–489.

    Article  MATH  Google Scholar 

  30. Simon, B. (1979). Functional Integration and Quantum Physics. London, New York: Academic Press.

    MATH  Google Scholar 

  31. Tarski, J. (1981). Path integrals over phase space, their definition and simple properties. Trieste preprint 1C/81/192 (to be published in the proceedings of the summer school in Poiana-Brasov, 1981 ). International Centre for Theoretical Physics, Miramare, Trieste, Italy.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this chapter

Cite this chapter

Elworthy, K.D. (1984). Path Integration on Manifolds. In: Seifert, HJ., Clarke, C.J.S., Rosenblum, A. (eds) Mathematical Aspects of Superspace. NATO ASI Series, vol 132. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6446-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6446-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6448-8

  • Online ISBN: 978-94-009-6446-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics