Skip to main content

Alternative Techniques For Picosecond Spectroscopy

  • Chapter
Applications of Picosecond Spectroscopy to Chemistry

Part of the book series: NATO ASI Series ((ASIC,volume 127))

  • 88 Accesses

Abstract

Photoacoustic detection methods and tunable laser-induced grating techniques can both provide useful new measurement capabilities for studying ultrafast physical and chemical processes and lifetimes. The photoacoustic technique, which measures the total acoustic impulse produced by two variable-delay picosecond pulses in an absorbing sample, provides a sensitive and effective technique for measuring the absolute cross sections and lifetimes of weakly absorbing excited states, with time resolution limited only by the optical pulsewidths. The transient grating techniques, which measure the probe beam diffraction from the moving excited- state gratings induced in a sample by two dye laser beams with a tunable difference frequency, provide an effective method for measuring picosecond and subpicosecond physical phenomena through measurements made in the frequency domain. Tunable transient grating measurements on organic dyes using both two-laser and three-laser methods will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. This material comes largely from a Ph.D. dissertation by Jean-Marc Heritier, Picosecond, Spectroscopy Using a Photo-acoustic Detector, Ph.D. dissertation submitted to the Department of Applied Physics, Stanford University, March 1983; plus additional references given below.

    Google Scholar 

  2. This material comes largely from a Ph.D. dissertation by Rick Trebino, Subpicosecond-Relaxation Studies using Tunable-Laser-Induced-Grating Techniques, Ph.D. dissertation submitted to the Department of Applied Physics, Stanford University, May 1983; plus additional references given below.

    Google Scholar 

  3. For introductory reviews of photoacoustic spectroscopy, see Yon-Han Pao, ed., Optoacoustic Spectroscopy and Detection, (Academic Press, New York, 1977); or Allen Rosencwaig, Photo-acoustics and Photoacoustic Spectroscopy, (John Wiley & Sons, Inc., New York, 1980). See also, C.K.N. Patel and A.C. Tam, 1981, Pulsed Optoacoustic Spectroscopy of Condensed Matter, Rev. of Mod. Phys. 53, pp. 517–550.

    Google Scholar 

  4. J-M. Heritier and A.E. Siegman, October 1983, Picosecond Measurements Using Photoacoustic Detection, IEEE J. Quantum Electron. QE-19, in press.

    Google Scholar 

  5. M. Bernstein, L.J. Rothberg and K.S. Peters, Picosecond Time- Resolved Photoacoustic Spectroscopy, in Picosecond Phenomena III, K.B. Eisenthal, R.M. Hochstrasser, W. Kaiser, and A. Laubereau, eds., Berlin: Springer-Verlag, 1982; pp. 112–115; and Time-Resolved Photoacoustic Spectroscopy in the Picosecond Regime, Chem. Phys. Lett. 91, pp. 315–318 (September 1982).

    Google Scholar 

  6. J-M. Heritier, J.E. Fouquet, and A.E. Siegman, 1982, Photoacoustic Cell Using Elliptical Acoustic Focusing, Appl. Opt. 21, pp. 90–93.

    Article  CAS  Google Scholar 

  7. Jean-Marc Heritier, January 1983, Electrostrictive Limit and Focusing Effects in Pulsed Photoacoustic Detection, Opt. Comm. 44, pp. 267–272.

    Article  Google Scholar 

  8. C.K.N. Patel and A.C. Tam, 1979, Optoacoustic Spectroscopy of Liquidsy Appl. Phys. Lett. 34, p. 467; and A.C. Tam, C.K.N. Patel and R.J. Kerl, 1979, Measurement of Small Absorption in Liquids, Opt. Lett. 81.

    Article  CAS  Google Scholar 

  9. A.E. Siegman, 1977, Proposed Picosecond Excited-State Measurement Method Using a Tunable-Laser-Induced Grating, Appl. Phys. Lett. 30, pp. 21–23; M. Sargent III, 1976, Laser Saturation Grating Phenomena, Appl. Phys. 9, pp. 127–141; J.R. Andtews and R.M. Hochstrasser, 1980, Transient Grating Studies of Energy Deposition in Radiationless Processes, Chem. Phys. Lett, 76, pp. 207–212; and J.R. Andrews and R.M. Hochstrasser, 1980, Transient Grating Effects in Resonant Four-Wave Mixing Experiments, Chem. Phys. Lett. 76, pp. 213–217.

    Article  Google Scholar 

  10. A.E. Siegman, 1977, Proposed Picosecond Excited-State Measurement Method Using a Tunable-Laser-Induced Grating, Appl. Phys. Lett. 30, pp. 21–23; M. Sargent III, 1976, Laser Saturation Grating Phenomena, Appl. Phys. 9, pp. 127–141; J.R. Andtews and R.M. Hochstrasser, 1980, Transient Grating Studies of Energy Deposition in Radiationless Processes, Chem. Phys. Lett, 76, pp. 207–212; and J.R. Andrews and R.M. Hochstrasser, 1980, Transient Grating Effects in Resonant Four-Wave Mixing Experiments, Chem. Phys. Lett. 76, pp. 213–217.

    Article  CAS  Google Scholar 

  11. A.E. Siegman, 1977, Proposed Picosecond Excited-State Measurement Method Using a Tunable-Laser-Induced Grating, Appl. Phys. Lett. 30, pp. 21–23; M. Sargent III, 1976, Laser Saturation Grating Phenomena, Appl. Phys. 9, pp. 127–141; J.R. Andtews and R.M. Hochstrasser, 1980, Transient Grating Studies of Energy Deposition in Radiationless Processes, Chem. Phys. Lett, 76, pp. 207–212; and J.R. Andrews and R.M. Hochstrasser, 1980, Transient Grating Effects in Resonant Four-Wave Mixing Experiments, Chem. Phys. Lett. 76, pp. 213–217.

    Article  Google Scholar 

  12. A.E. Siegman, 1977, Proposed Picosecond Excited-State Measurement Method Using a Tunable-Laser-Induced Grating, Appl. Phys. Lett. 30, pp. 21–23; M. Sargent III, 1976, Laser Saturation Grating Phenomena, Appl. Phys. 9, pp. 127–141; J.R. Andtews and R.M. Hochstrasser, 1980, Transient Grating Studies of Energy Deposition in Radiationless Processes, Chem. Phys. Lett, 76, pp. 207–212; and J.R. Andrews and R.M. Hochstrasser, 1980, Transient Grating Effects in Resonant Four-Wave Mixing Experiments, Chem. Phys. Lett. 76, pp. 213–217.

    Article  CAS  Google Scholar 

  13. Robert Fisher, ed., Optical Phase Conjugation, (Academic Press, 1983).

    Google Scholar 

  14. F. Keilmann, 1976, Infrared Saturation Spectroscopy in p-Type Germanium, IEEE J. Quantum Electron. QE-12, pp. 592–597; J.J. Song, J.H. Lee, and M.D. Levenson, 1978, Picosecond Relaxation Measurements by Polarization Spectroscopy in Condensed Phases, Phys. Rev. A, 17, pp. 1439-1447; F. Keilmann, 1977, Tunable-Laser-Induced Grating Dip for Measuring Sub- picosecond Relaxation, Appl. Phys. 14, pp. 29–33; J.R. Andrews and R.M. Hochstrasser, 1980, Femtosecond Relaxation of an Iron Porphyrin Observed with Polarization Spectroscopy in a Three-Level System, Proc. Natl. Acad. Sci. USA, 77, pp. 3110–3114.

    Google Scholar 

  15. E.P. Ippen, C.V. Shank, and A. Bergman, 1976, Picosecond Recovery Dynamics of Malachite Green, Chem. Phys. Lett. 38, pp. 611–614.

    Article  CAS  Google Scholar 

  16. Th. Förster und G. Hoffman, 1971, Die Viskositatsabhangigkeit der Fluoreszenzquantenausbeuten einiger Farbstoffsysteme, Z. Phys. Chem. N.F. Bd. 75, S. pp. 63–76.

    Article  Google Scholar 

  17. D.A. Cremers and M.W. Windsor, 1980, Study of the Viscosity- Dependent Electronic Relaxation of Some Triphenylmethane Dyes Using Picosecond Flash Photolysis, Chem. Phys. Lett. 71, pp. 27–32.

    Article  CAS  Google Scholar 

  18. W. Yu, F. Pellegrino, M. Grant and R.R. Alfano, 1977, Subnanosecond Fluorescence Quenching of Dye Molecules in Solution, J. Chem. Phys. 64, pp. 1766–1773.

    Article  Google Scholar 

  19. M. Stavola, G. Mourou and W. Knox, 1980, Picosecond Time-Delay Fluorimetry Using a Jitter-Free Streak Camera, Opt. Comm. 34, pp. 404–408.

    Article  CAS  Google Scholar 

  20. P. Wirth, S. Schneider and F. Dorr, 1977, S—Lifetimes of Triphenylmethane and Indigo Dyes Determined by Two-Photon Fluorescence Technique Opt. Comm. 20, pp. 155–158.

    Article  CAS  Google Scholar 

  21. Rick Trebino, Eric K. Gustafson and A.E. Siegman, Thermal- Grating Formation with Partially Coherent Radiation from a Single Source,to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this chapter

Cite this chapter

Siegman, A.E. (1984). Alternative Techniques For Picosecond Spectroscopy. In: Eisenthal, K.B. (eds) Applications of Picosecond Spectroscopy to Chemistry. NATO ASI Series, vol 127. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6427-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6427-3_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6429-7

  • Online ISBN: 978-94-009-6427-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics