Skip to main content

Optimization and the Many-Fermion Problem

  • Chapter
Monte Carlo Methods in Quantum Problems

Part of the book series: NATO ASI Series ((ASIC,volume 125))

Abstract

This paper will review the techniques which have been used to overcome the problems in applying Monte Carlo to fermion systems. They include the “fixed node approximation”; a projection method often called “transient estimation”; a method, applicable to few-body systems in which the appropriate Green’s functions are cancelled in part; several proposals for optimizing the unknown nodal surface; and removing a set of configurations in such a way as to minimize the effect upon expectations for fermion systems.

The successes achieved and the problems which remain will be outlined.

Supported by the U.S. Department of Energy under Grant AC 02-79ER10353.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McMillan, W.L.: 1965, Phys. Rev. A 138, p.442.

    Article  ADS  Google Scholar 

  2. Levesque, D., Khiet, Tu, Schiff, D., and Verlet, L.: Orsay report (1965), unpublished.

    Google Scholar 

  3. Ceperley, D.M. and Kalos, M.H.: “Monte Carlo Methods in Statistical Physics”, edited by K. Binder (Springer, Berlin, 1979) Chap. 4.

    Google Scholar 

  4. Courant, R., Friedrichs, K.D., and Loewy, H.: 1928, Math. Ann. 100, p32.

    Article  MathSciNet  MATH  Google Scholar 

  5. Metropolis, N. and Ulam, S.: 1949, J. Am. Stat. Ass. 44, p335.

    Article  MathSciNet  MATH  Google Scholar 

  6. Kalos, M.H.: 1962, Phys. Rev. 128, p1891;

    Article  MathSciNet  ADS  Google Scholar 

  7. Kalos, M.H.: 1970, Phys. Rev. A 2, p250.

    Article  ADS  Google Scholar 

  8. Whitlock, P.A, and Kalos, M.H: Monte Carlo notes (unpublished)

    Google Scholar 

  9. Kalos, M.H., Levesque, D., and Verlet, L.: 1974, Phys. Rev. A 9, p2178.

    Article  ADS  Google Scholar 

  10. Whitlock, P.A., Ceperley, D.M., Chester, G.V., and Kalos, M.H.: 1979, Phys. Rev. B 19, p5598.

    Article  ADS  Google Scholar 

  11. Kalos, M.H., Lee, M.A., Whitlock, P.A., and Chester, G.V.: 1981, Phys. Rev. B 24, p115.

    Article  ADS  Google Scholar 

  12. Pandharipande, V.R., et al.: (1983) Phys. Rev. Letts. 50, pp 1676–1678.

    Article  ADS  Google Scholar 

  13. Aziz, R.A., et al.: 1979, J. Chem. Phys. 70, p4330.

    Article  ADS  Google Scholar 

  14. Ceperley, D. and Alder, B.: 1980, Phys. Rev. Lett. 45, p566.

    Article  ADS  Google Scholar 

  15. Lee, M.A., Schmidt, K.E., Kalos, M.H., and Chester, G.V.: 1981, Phys. Rev. Lett., 46, p728.

    Article  ADS  Google Scholar 

  16. Anderson, J.B.: 1975, J. Chem. Phys. 63, p1499.

    Article  ADS  Google Scholar 

  17. Moskowitz, J.W., Schmidt, K.E., Lee, M.A., and Kalos, M.H.: 1982, J. Chem. Phys. 77, p349.

    Article  ADS  Google Scholar 

  18. Ceperley, D.M.: private communication.

    Google Scholar 

  19. Anderson, J.B.: 1980, J. Chem. Phys. 73, p3897;

    Article  MathSciNet  ADS  Google Scholar 

  20. Reynolds, P.J., Ceperley, D.M., Alder, B.J., and Lester, W.A.: 1982, J. Chem. Phys., 77, p5593.

    Article  ADS  Google Scholar 

  21. Ceperley, D. and Alder, B.J.: 1981, Physica 108B, p875;

    Google Scholar 

  22. Ceperley, D. “A Review of Quantum Monte Carlo Methods and Results for Coulombic Systems”, this volume.

    Google Scholar 

  23. Reatto, L.: 1982, Phys. Rev. B 26, pp 130–136;

    Article  ADS  Google Scholar 

  24. Masserini, G.L. and Reatto, L. “Maximum overlap Jastrow Wave Function of the Lennard-Jones Bose Fluid”, this volume.

    Google Scholar 

  25. Arnow, D., “Stochastic Solutions to the Schrodinger Equation for Fermions”, Dissertation, New York University (1981)

    Google Scholar 

  26. Arnow, D., Kalos, M.H., Lee, M.A., and Schmidt, K.E.: 1982, J. Chem. Phys. 77, p1.

    Article  Google Scholar 

  27. Kalos, M.H.: “GFMC and the Many-Fermion Problem”, 1981, Lecture Notes in Physics, 142, Zabolitzky, J.G., et al., Eds, Springer-Verlag, p252.

    Google Scholar 

  28. Burkhard, R.E., and Derigs, U.: “Assignment and Matching Problems”, 1980, in Lecture notes in Economics and Mathematical Systems, Vol. 184, Beckmann, M., and Kunzi, H.P., Eds., Springer-Verlag.

    Google Scholar 

  29. Ceperley, D.M., private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Kalos, M.H. (1984). Optimization and the Many-Fermion Problem. In: Kalos, M.H. (eds) Monte Carlo Methods in Quantum Problems. NATO ASI Series, vol 125. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6384-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6384-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6386-3

  • Online ISBN: 978-94-009-6384-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics