Advertisement

On the Concept of Reason

  • Francisco Miró Quesada
Part of the Synthese Library book series (SYLI, volume 172)

Abstract

When empiricism began to decline, because it could in no way explain the nature of logic and mathematics while keeping its principles with respect to empirical knowledge, it evolved toward pragnatism in order to account for the a priori aspect of logical deduction and mathematical truth. For the Vienna Circle, logic was a kind of shorthand, whose rules were only the rules of an arbitrary syntax, justified because they could express in a concise and precise way the content of empirical science. This alliance between empiricism and pragmatism led, in a natural way, to relativism. This kind of relativism ruled the philosophical scene for many years as far as logic and mathematics are concerned, and even today one can say without exaggeration that a vast nunber of philosophers of science abide by it.

Keywords

Fuzzy Logic Modal Logic Classical Logic Logical System Intuitionist Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Arruda, Ayda. A Survey of Paraconsistent Logic. Relatorio interno N 106. Universidade Estadual de Campinas. Instituto de matematica, Estadfstica e Ciencia da Ccmputaeao, 1979.Google Scholar
  2. DaCosta, N. C. A. “On the Theory of Inconsistent Formal Systems,” Notre Dame Journal of Formal Logic, 15 (1974), 497, 510.Google Scholar
  3. DaCosta, N. C. A. “Logique Mathématique-Remarques sur les calculs C, C, C= et D,” C. R. Acad SC, Paris 278 (18 mars 1974), Serie A-819.Google Scholar
  4. DaCosta N. C. A. and Wolf, R. G. Studies in Paraconsistent Logic I: The Dialectical Principle of the Unity of Contraries. Unpublished.Google Scholar
  5. Goddard, Leonard and Routley, Richard. The Logic of Significance and Context. Edinburgh and London: Scottish Acadonic Press, 1973.Google Scholar
  6. Gödel, K. “Russell’s Mathematical Logic,” in Philosophy of Mathematics ed. Paul Banacerraf and Hilary Putnam. Oxford: Basil Blackwell, 1964.Google Scholar
  7. Haack, Susan. Deviant Logic — Some Philosophical Issues. Cambridge: Cambridge University Press, 1974.Google Scholar
  8. Heyting, A. Intuitionism—An Introduction. Amsterdam: North-Holland Publishing Company, 1956.Google Scholar
  9. Jaskowski, S. “A Calculus of Propositions for Contradictory Deductive Systems.” Studio. Soc. Seen. Torunensis, section A. 1 (1948), 27–77.Google Scholar
  10. Klimovsky, G. El método hipotético-deductivo v la lógica. Instituto de Lógica y de Filosofía de las Ciencias. Universidad Nacional de La Plata, SIF. p. 14.Google Scholar
  11. Kneale, William and Kneale, Martha. The Development of Logic. Oxford: Clarendon Press, 1962.Google Scholar
  12. Lukasiewicz, J. Selected Works. Amsterdam: North Holland Publishing Company, 1974.Google Scholar
  13. Miro Quesada, Francisco. “Las lógicas heterodoxas y el problema de la unidad de la lógica.” in Lógica — Aspectos Formales v Filosóficos. Lima: Pontificia Universidad-Católica del Peru, 1978.Google Scholar
  14. Miro Quesada, Francisco. “Lógica y Razón.” Ponencia presentada a la Sociedad Peruana de Filosofía, 1979.Google Scholar
  15. Pap, Semantics and Necessary Truth. New Haven: Yale University Press, 1958.Google Scholar
  16. Peña, Lorenzo. Contradiction et verite-Étude sur les fondements et la porté epistemologique d’une logique contradictorielle. Liege, 1979.Google Scholar
  17. Peña, Lorenzo. Apuntes introductorios a la lógica matemática elemental. Quito: Pontificia Universidad Católica del Ecuador, 1980.Google Scholar
  18. Rosser, J. B. and Turquette, A. R. Manv-valued Logics..Amsterdam: North-Holland Publishing Company, 1952.Google Scholar
  19. Zadeh, L. A. “Fuzzy Sets,” Information and Control 8 (1965), 338–365.CrossRefGoogle Scholar
  20. Zadeh, L. A. “Fuzzy Logic and Approximate Reasoning,” Synthese 30 (1975).Google Scholar
  21. Zadeh, L. A. “Inference in Fuzzy Logic.” Research supported by the National Science Foundation, 1978.Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • Francisco Miró Quesada

There are no affiliations available

Personalised recommendations