Skip to main content

Brauer Groups of Homogenecus Spaces, I

  • Chapter
Methods in Ring Theory

Part of the book series: NATO ASI Series ((ASIC,volume 129))

  • 228 Accesses

Abstract

This work originates with my desire to find an algebraic homogeneous space, with respect to an affine algebraic group over (C the field of complex numbers which is not a rational algebraic variety. The question in fact is open, but I believe that a non- rational homogeneous space will be found. A quick perusal of the facts involved shows that the chief candidate for such a homogeneous space would be one of the form G/K for G and K both semi-simple over (E and K not contained in any parabolic subgroup of G. In fact this last condition is not essential, but by considering Levi factors one sees that the essential part of the problem lies here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Art in and D. Mumford, “Some elementary examples of unirational varieties which are not rational”,- Proc. London Math Soc. 3 (1972) pp. 75–95.

    Google Scholar 

  2. M. Auslander and O. Goldman, “The Brauer group of a commutative ring”, Trans. Amer. Math. Soc. 97 (1960) PP. 367–409.

    Article  MathSciNet  Google Scholar 

  3. W. Browder, “Torsion in H-spaces”, Ann. of Math. (2) 74 (1961) pp. 24–51.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Cartan, “La topologie des espaces representatifs des groupes de lie”, Cuvres, Part I, v. 2 No. 150 p. 1307.

    Google Scholar 

  5. M. Demazure, A. Grothendieck et.al., Schemas en Groupes 1, lecture Notes in Mathematics v. 151 Springer Verlag, Berlin Heidelberg New York 1970.

    Google Scholar 

  6. O. Gabber, “Some theorems on Azumaya algebras” in Le Groupe de Brauer, Lecture Notes in Mathematics v. 844 Springer Verlag, Berlin Heidelberg New York 1981.

    Google Scholar 

  7. A. Grothendieck, “Le groupe de Brauer I-III” in Dix Exposes sur la Cohomologie des Schemas, Elsevier North Holland, Amsterdam 1968.

    Google Scholar 

  8. R. Hoobler, “When is Br(X)=βr’(X)?”in Brauer Groups in Ring Theory and Algebraic Geometry, Proceedings, Antwerp 1981, P. van Ostaeyen and A. Verschoren ed. Lecture Notes In Mathematics v. 917 Springer Verlag Berlin Heidelberg New York 1982.

    Google Scholar 

  9. B. Iversen, “Brauer group of a linear algebraic group”, J. Algebra 42 (1976) pp. 295–301.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this chapter

Cite this chapter

Haboush, W. (1984). Brauer Groups of Homogenecus Spaces, I. In: van Oystaeyen, F. (eds) Methods in Ring Theory. NATO ASI Series, vol 129. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6369-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6369-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6371-9

  • Online ISBN: 978-94-009-6369-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics