Skip to main content

Wave-Particle Duality of Light: A Current Perspective

  • Chapter
Book cover The Wave-Particle Dualism

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 3))

Abstract

Ideas of wave-particle duality of light are traced through various stages, from Einstein to quantum optics and recent developments in the conceptual foundations of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bondi, “Logical Foundations of Physics,” Perspectives in Quantum Theory, ed. by W. Yourgrau and A. van der Merwe (Dover, N.Y., 1979), p. 237.

    Google Scholar 

  2. R. P. Feynman, “The Character of Physical Law,” (M.I.T. Press, Cambridge, Mass., 1978), p. 129.

    Google Scholar 

  3. A. Einstein, Ann. Physik 17, p. 132 (1905). I have used the English translation of A. B. Arons and M. B. Peppard, Amer. J. Phys. 33, p. 367 (1965).

    Article  MATH  ADS  Google Scholar 

  4. M. J. Klein, “Einstein and the Development of Quantum Physics,” in “Einstein. A Centenary Volume,” ed. by A. P. French (Harvard University Press, Cambridge, Mass., 1979).

    Google Scholar 

  5. P. Lenard (Ann. Physik 8, p. 149 (1902)) had observed that the photoelectron energy was independent of the intensity of the incident light.

    Article  ADS  Google Scholar 

  6. R. A. Millikan, Phys. Rev. 7, p. 18 (1916).

    Article  ADS  Google Scholar 

  7. R. A. Millikan, Phys. Rev. 7, p. 355 (1916).

    Article  ADS  Google Scholar 

  8. The term “photon” was coined by the chemist G. N. Lewis in 1926 (Nature 118, p. 874). His concept of these photons, however, did not attract much serious attention.

    Google Scholar 

  9. G. I. Taylor, Proc. Camb. Phil. Soc. 15, p. 114 (1909).

    Google Scholar 

  10. S. Parker, Am. J. Phys. 40, p. 1003 (1972).

    Article  ADS  Google Scholar 

  11. A. Einstein, Phys. Z. 10, p. 185 (1909).

    Google Scholar 

  12. A. Einstein, Ann. Phys. (Leipzig) 14, p. 354 (1904).

    Article  MATH  Google Scholar 

  13. H. A. Lorentz, “Les Théories Statistiques en Thermodynamique” (Teubner, Leipzig, 1916), p. 59.

    Google Scholar 

  14. See, for example, A. Einstein and L. Hopf, Ann. Phys. 33, p. 1105 (1910), and A. Einstein and O. Stern, Ann. Phys. 40, p. 551 (1913).

    Google Scholar 

  15. A. Einstein, Phys. Z. 18, p. 121 (1917).

    Google Scholar 

  16. T. H. Boyer, Phys. Rev. 182, p. 1374 (1969).

    Article  ADS  Google Scholar 

  17. P. W. Milonni, Am. J. Phys. 49, p. 177 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  18. P. Debye, Phys. Z. 24, p. 161 (1923).

    Google Scholar 

  19. A. H. Compton, Phys. Rev. 21, p. 483 (1923).

    Article  ADS  Google Scholar 

  20. N. Bohr, H. A. Kramers, and J. C. Slater, Phil. Mag. 47, p. 785 (1924).

    Google Scholar 

  21. W. Bothe and H. Geiger, Z. Phys. 26, p. 44 (1924). Also A. H. Compton and A. W. Simon, Phys. Rev. 26, p. 889 (1925).

    Article  ADS  Google Scholar 

  22. S. N. Bose, Z. Phys. 26, p. 178 (1924).

    Article  ADS  Google Scholar 

  23. See M. Jammer, “The Conceptual Development of Quantum Mechanics” (McGraw-Hill, N.Y., 1966), p. 248.

    Google Scholar 

  24. “. . .a cell of volume h3 in phase space is equivalent to a discrete state.” P. A. M. Dirac, “The Principles of Quantum Mechanics” (Oxford, 1967), fourth edition, p. 239.

    Google Scholar 

  25. M. Born, W. Heisenberg, and P. Jordan, Z. Phys. 35, p. 557 (1926).

    Article  ADS  Google Scholar 

  26. W. Heisenberg, Z. Phys. 33, p. 879 (1925); M. Born and P. Jordan, Z. Phys. 34, p. 858 (1925).

    Article  ADS  Google Scholar 

  27. This point was also made in Reference (17). I was not aware then that the Born-Heisenberg-Jordan paper contained a discussion of the fluctuation formula.

    Google Scholar 

  28. The argument applied to vibrations of a string. Lorentz (Reference 13) had already done the calculation for electric waves.

    Google Scholar 

  29. P. A. M. Dirac, Proc. Roy. Soc. (London) A114, p. 243 (1927).

    ADS  Google Scholar 

  30. L. Landau, Z. Phys. 45, p. 430 (1927).

    Article  ADS  Google Scholar 

  31. V. F. Weisskopf and E. Wigner, Z. Phys. 63, p. 54 (1930).

    Article  ADS  Google Scholar 

  32. A description of spontaneous emission in terms of radiation reaction was given by J. R. Ackerhalt, P. L. Knight, and J. H. Eberly, Phys. Rev. Lett. 30, p. 456 (1973). A complementary description in terms of the zero-point field is also possible: P. W. Milonni, J. R. Ackerhalt, and W. A. Smith, Phys. Rev. Lett. 31, p. 958 (1973). See also P. W. Milonni, Phys. Rep. 25, p. 1 (1976).

    Google Scholar 

  33. E. Fermi, Rev. Mod. Phys. 4, p. 87 (1932).

    Article  ADS  Google Scholar 

  34. For fürther discussion of this point see P. W. Milonni, Phys. Rev. A25, p. 1315 (1982).

    Google Scholar 

  35. P. A. M. Dirac, Reference (24), p. 9.

    Google Scholar 

  36. E. T. Jaynes, private communication.

    Google Scholar 

  37. For a recent discussion with references to earlier work see R. J. Cook, Phys. Rev. A25, p. 2164 (1982).

    Google Scholar 

  38. The subject has been reviewed by several authors: P. W. Milonni, Phys. Rep. 25, p. 1 (1976); L. Mandel, in “Progress in Optics,” ed. by E. Wolf (North-Holland, Amsterdam, 1976), vol. XIII, p. 27; I. R. Senitzky, ibid., vol. XVI, p. 415.

    Google Scholar 

  39. O. R. Frisch, Z. Phys. 86, p. 42 (1933).

    Article  ADS  Google Scholar 

  40. O. R. Frisch, in “Niels Bohr,” ed. by S. Rozenthal (North-Holland, Amsterdam, 1967).

    Google Scholar 

  41. J. L. Picque and J. L. Vialle, Opt. Commun. 5, p. 402 (1972).

    Article  ADS  Google Scholar 

  42. R. Scheider, H. Walther, and L. Wöste, Opt. Commun. 5, p. 337 (1972).

    Article  ADS  Google Scholar 

  43. An exception is A. E. Siegman, “An Introduction to Lasers and Masers,” (McGraw-Hill, N.Y., 1971), p. 26.

    Google Scholar 

  44. L. Mandel, E. C. G. Sudarshan, and E. Wolf, Proc. Phys. Soc. Lond. 84, p. 435 (1964); P. A. Franken, in “Atomic Physics,” ed. by B. Bederson, et. al. (Plenum, N.Y., 1969), p. 377. See also G. Wentzel, Z. Phys. 41, p. 828 (1927).

    Article  ADS  MathSciNet  Google Scholar 

  45. J. F. Clauser, Phys. Rev. D9, p. 853 (1974).

    ADS  Google Scholar 

  46. P. W. Milonni, Reference (38).

    Google Scholar 

  47. E. T. Jaynes, in “Coherence and Quantum Optics,” ed. by L. Mandel and E. Wolf (Plenum, N.Y., 1973); ibid., 1978.

    Google Scholar 

  48. J. F. Clauser, Phys. Rev. A6, p. 49 (1972).

    ADS  Google Scholar 

  49. C. A. Kocher and Ed. D. Commins, Phys. Rev. Lett. 18, p. 575 (1967).

    Google Scholar 

  50. P. A. M. Dirac, Ref. (24), pp. 4–7.

    Google Scholar 

  51. For a review of the subject see C. Cohen-Tannoudji, in “Frontiers in Laser Spectroscopy,” ed. by R. Balian, et. al. (North-Holland, Amsterdam, 1977), vol. I, pp. 3–102; P. L. Knight and P. W. Milonni, Phys. Rep. 66, p. 21 (1980).

    Google Scholar 

  52. F. Schuda, C. R. Stroud, Jr., and M. Hercher, J. Phys. B: Atom. Molec. Phys. 7, p. L198 (1974); H. Walther, in “Laser Spectroscopy,” ed. by S. Haroche, et. al. (Springer-Verlag, Berlin, 1975); F. Y. Wu, R. E. Grove, and S. Ezekiel, Phys. Rev. Lett. 35, p. 1426 (1975).

    Article  ADS  Google Scholar 

  53. A. I. Burshtein, Sov. Phys. JETP 21, p. 567 (1965); M. Newstein, Phys. Rev. 167, p. 89 (1968); B. R. Mollow, Phys. Rev. 188, p. 1969 (1969).

    ADS  Google Scholar 

  54. H. J. Carmichael and D. F. Walls, J. Phys. B: Atom. Molec. Phys. 9, p. L43 (1976); H. J. Kimble and L. Mandel, Phys. Rev. A13, p. 2123 (1976); C. Cohen-Tannoudji in “Frontiers in Laser Spectroscopy,” ed. by R. Balian, S. Haroche, and S. Liberman (North-Holland, Amsterdam, 1977), vol. I, pp. 3–102.

    Article  ADS  Google Scholar 

  55. H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, p. 691 (1977).

    Google Scholar 

  56. E. Schrodinger, Ann. Phys. 82, p. 257 (1927). See also W. Gordon, Z. Phys. 40, p. 117 (1927).

    Article  Google Scholar 

  57. R. H. Brown and R. Q. Twiss, Nature 177, p. 27 (1956).

    Article  ADS  Google Scholar 

  58. R. H. Brown and R. Q. Twiss, Proc. Roy. Soc. A242, p. 300 (1957).

    ADS  Google Scholar 

  59. See also E. M. Purcell, Nature 178, p. 1449 (1956).

    Google Scholar 

  60. Of course what is really being measured is not intensity but photoelectron counts. A frequently used formula for the probability of counting n photons in a given time interval was derived by L. Mandel, Proc. Phys. Soc. 72, p. 1037 (1958); 74, p. 233 (1959).

    Google Scholar 

  61. An important point omitted in these idealized discussions is the role of spatial coherence in experiments of the Brown-Twiss type. The optical path differences from points on the source to points on the detector must be kept small to observe intensity correlations. In fact Brown and Twiss were concerned with the decrease of the intensity correlations with detector separation as a means of determining the angular diameter of the source (e.g., a star). See Eq. (4.2).

    Google Scholar 

  62. R. J. Glauber, “Optical Coherence and Photon Statistics,” in “Quantum Optics and Electronics,” ed. by C. DeWitt, et. al. (Gordon and Breach, New York, 1964).

    Google Scholar 

  63. In Feynman’s approach to quantum mechanics the interference of probability amplitudes captures the very essence of the theory. The most fundamental innovation of quantum mechanics was “the discovery that in nature the laws of combining probabilities were not those of the classical probability theory of Laplace.” R. P. Feynman, in “Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability” University of California Press, Berkeley, 1951, p. 533. The same view has been expressed by Dirac, Fields and Quanta 3, p. 154 1972. See also W. Heisenberg, “The Physical Principals of the Quantum Theory” University of Chicago Press, 1930, p. 59.

    Google Scholar 

  64. See also R. P. Feynman, “Theory of Fundamental Processes” (Benjamin, New York, 1962), pp. 4–6.

    Google Scholar 

  65. R. H. Brown and R. Q. Twiss, Phil. Mag. 45, p. 663 (1954); Nature 178, p. 1046 (1956).

    Google Scholar 

  66. L. Mandel and E. Wolf, Rev. Mod. Phys. 37, p. 231 (1965). See also R. J. Glauber, Ref. (62).

    Article  ADS  MathSciNet  Google Scholar 

  67. L. Mandel, J. Opt. Soc. Am. 51, p. 797 (1961). See also L. Mandel, J. Opt. Soc. Am. 69, p. 1038 (1979).

    Article  ADS  Google Scholar 

  68. R. L. Pfleegor and L. Mandel, Phys. Rev. 159, p. 1084 (1967).

    Article  ADS  Google Scholar 

  69. G. Magyar and L. Mandel, Nature 198, p. 255 (1963).

    Article  ADS  Google Scholar 

  70. A clear introduction to the Brown-Twiss effect and photon statistics is given by R. Loudon, “The Quantum Theory of Light” (Clarendon Press, Oxford, 1973). For a recent review of non-classical aspects of photon statistics see also R. Loudon, Rep. Prog. Phys. 43, p. 913 (1980).

    Google Scholar 

  71. R. J. Glauber, Phys. Rev. 131, p. 2766 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  72. Mandel’s analysis (J. Opt. Soc. Am. 69, p. 1038 (1979)) is consistent with the picture of photons in a thermal field being roughly a typical wavelength λ (proportional to T-1) apart. The coherence volume is roughly λ3, and it follows that the average photon number per unit cell of phase space, averaged over all frequencies, is of order unity.

    Google Scholar 

  73. F. T. Arecchi, Phys. Rev. Lett. 15, p. 912 (1965). See also, for example, F. T. Arecchi, A. Berne, and P. Burlamacchi, Phys. Rev. Lett. 16, p. 32 (1966).

    Article  ADS  Google Scholar 

  74. R. P. Feynman, Ref. (63). See also R. P. Feynman, R. B. Leighton, and M. Sands, “The Feynman Lectures on Physics” (Addison-Wesley, Reading, Mass., 1965), vol. 3, Chapter 1.

    Google Scholar 

  75. B. d’Espagnat Sci. Am. 241, p. 158 (1979).

    Article  Google Scholar 

  76. J. S. Bell, Physics 1, p. 195 (1965); Rev. Mod. Phys. 38, p. 447 (1966).

    Google Scholar 

  77. S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. 28, p. 938 (1972).

    Article  ADS  Google Scholar 

  78. J. F. Clauser, Phys. Rev. Lett. 36, p. 1223 (1976).

    Article  ADS  Google Scholar 

  79. E. S. Fry and R. C. Thompson, Phys. Rev. Lett. 37, p. 465 (1976).

    Article  ADS  Google Scholar 

  80. J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, p. 1881 (1978).

    Article  ADS  Google Scholar 

  81. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, p. 777 (1935).

    Article  MATH  ADS  Google Scholar 

  82. This point was emphasized in a letter from W. Pauli to M. Born in 1954. See “The Born-Einstein Letters” (Walker, New York, 1971), p. 221.

    Google Scholar 

  83. D. Bohm, “Quantum Theory” (Prentice-Hall, Englewood Cliffs, New Jersey, 1951), pp. 614–22.

    Google Scholar 

  84. N. Bohr, Phys. Rev. 48, p. 696 (1935).

    Article  MATH  ADS  Google Scholar 

  85. The earlier “Bohr-Einstein debates” should not be confused with those relating specifically to EPR.

    Google Scholar 

  86. Bohr’s position is discussed by C. A. Hooker in “Paradigms and Paradoxes,” ed. by R. G. Colodny (University of Pittsburgh, Pittsburgh, Pennsylvania, 1972).

    Google Scholar 

  87. A. Einstein, letter to M. Born, 12 January 1954. See “The Born-Einstein Letters,” Ref. (82), p. 215.

    Google Scholar 

  88. A. Einstein, J. Franklin Institute 221, p. 349 (1936). See p. 375.

    Article  ADS  Google Scholar 

  89. M. Born, in “The Born-Einstein Letters,” Ref. (82), p. 210.

    Google Scholar 

  90. For a discussion of the statistical (ensemble) interpretation of ψ see L. E. Ballentine, Rev. Mod. Phys. 42, p. 358 (1970). See also R. G. Newton, Am. J. Phys. 48, p. 1029 (1980).

    Google Scholar 

  91. D. Bohm, Phys. Rev. 85, p. 169 (1952).

    ADS  Google Scholar 

  92. This was also recognized by Bohm.

    Google Scholar 

  93. See M. Jammer, “The Philosophy of Quantum Mechanics” (Wiley, New York, 1974), Chapter 7.

    Google Scholar 

  94. J. von Neumann, “Mathematical Foundations of Quantum Mechanics” (Princeton University, Princeton, New Jersey, 1955), pp. 307–25.

    MATH  Google Scholar 

  95. It is interesting that, although the EPR paper has sometimes been interpretated in part as a suggestion for hidden variables, the paper made no reference to von Neumann’s work (1932) in this direction. It is more likely that EPR had no such intention. In a letter to Born in 1952, Einstein writes: “Have you noticed that Bohm believes (as de Broglie did, by the way, 25 years ago) that he is able to interpret the quantum theory in deterministic terms? That way seems too cheap to me.” (“The Born-Einstein Letters,” p. 192).

    Google Scholar 

  96. J. S. Bell, in “Foundations of Quantum Mechanics,” Proceedings of the International School of Physics “Enrico Fermi,” ed. by B. d’Espagnat (Academic Press, New York, 1971).

    Google Scholar 

  97. J. F. Clauser and M. A. Horne, Phys. Rev. D10, p. 526 (1974).

    ADS  Google Scholar 

  98. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, p. 880 (1969).

    Article  ADS  Google Scholar 

  99. T. W. Marshall, Phys. Lett. 75A, p. 265 (1980).

    ADS  Google Scholar 

  100. See, for example, P. W. Milonni and P. L Knight, Opt. Commun. 9, p. 119 (1973).

    Google Scholar 

  101. A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, p. 460 (1981).

    Article  ADS  Google Scholar 

  102. R. P. Feynman, et. al., Ref. (74), p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this chapter

Cite this chapter

Milonni, P.W. (1984). Wave-Particle Duality of Light: A Current Perspective. In: Diner, S., Fargue, D., Lochak, G., Selleri, F. (eds) The Wave-Particle Dualism. Fundamental Theories of Physics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6286-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6286-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6288-0

  • Online ISBN: 978-94-009-6286-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics