Skip to main content

Part of the book series: Mechanics of elastic and inelastic solids 6 ((MEIS,volume 6))

  • 418 Accesses

Abstract

This paper provides an overview of the calculation of penetration. Particular emphasis is placed on numerical simulation of penetration. The predictive capability of current wave propagation codes for impact problems as well as requirements for improving their predictive capability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • (1980), “Materials Response to Ultra-high Loading Rates,” National Materials Advisory Board, NMAB-356, Washington, D.C.

    Google Scholar 

  • — (1982), Workshop on Dynamic Fracture: Modeling and Quantitative Analysis, May 17–19, 1982, Baltimore, Maryland, Ballistic Research Laboratory, Army Research Office and Army Research Office-Europe.

    Google Scholar 

  • Backman, M.E., and W. Goldsmith (1978), “The Mechanics of Penetration of Projectiles into Targets,” Int. J. Eng. Sco., 16, 1–99.

    Article  Google Scholar 

  • Belytschko, T. (1975), “Nonlinear Analysis — Description and Stability,” Computer Programs in Shook and Vibration, W. Pilkey and B. Pilkey (eds.), Shock and Vibration Information Center, Washington, D.C., 537–562.

    Google Scholar 

  • Curran, D. (1982), “Dynamic Fracture,” Chapter 9 in J.A. Zukas et al., Impact Dynamics, Wiley-Interscience, New York.

    Google Scholar 

  • Davidson, L., A.L. Stevens and M.E. Kipp (1977), “Theory of Spall Damage, Accumulation in Ductile Metals,” J. Mech. Phys. Solids, 25, 11.

    Article  ADS  Google Scholar 

  • Erlich, D.C., D.R. Curran and L. Seaman (1980), “Further Development of a Computational Shear Band Model,” Army Materials and Mechanics Research Center Final. Report AMMRC-TR-80-3.

    Google Scholar 

  • Goldsmith, W. (1960), Impact, Edward Arnold, London.

    MATH  Google Scholar 

  • Hallquist, J.O. (1980), “User’s Manual for DYNA2D — An Explicit Two-Dimensional Hydrodynamic Finite Element Code with Interactive Rezoning,” Lawrence Livermore Laboratory, UCID-18756.

    Google Scholar 

  • Herrmann, W. (1975), “Nonlinear Transient Response of Solids,” Shock and Vibration Computer Programs Reviews and Summaries, W. and B. Pilkey (eds.), Shock and Vibration Information Center, Washington, D.C.

    Google Scholar 

  • Johnson, G.R. et al. (1979), “Three-Dimensional Computer Code for Dynamic Response of Solids to Intense Impulsive Loads,” Int. J. Eng. Sci., 14, 1865–1871.

    MATH  Google Scholar 

  • Johnson, G.R. (1981), “Recent Developments and Analyses Associated with the EPIC-2 and EPIC-3 Codes,” 1981 Advances in Aerospace Structures and Materials, S.S. Wang and W.J. Renton (eds.), AD-01, ASME, New York.

    Google Scholar 

  • Johnson, G.R. (1982), “Status of the EPIC Codes, Material Characterization and New Computing Concepts at Honeywell,” Proc. of the Army Research Office Workshop on Computational Aspects of Penetration Mechanics, J. Chandra and J.E. Flaherty (eds.), Springer-Verlag, New York.

    Google Scholar 

  • Johnson, W. (1972), Impact Strength of Materials, Crane, Russak, New York.

    MATH  Google Scholar 

  • Jonas, G.H. and J.A. Zukas (1978), “Mechanics of Penetration: Analysis and Experiment,” Int. J. Engng. Sci., 16, 879–903.

    Article  Google Scholar 

  • Lambert, J.P. (1978), “The Terminal Ballistics of Certain 65 Gram Long Rod Penetrators Impacting Steel Armor Plate,” Ballistics Research Laboratory, ARBRL-TR-02072.

    Google Scholar 

  • Matuska, D.A. and J.J. Osborn (1981), “HULL/EPIC3 Linked Eulerian/Lagrangian Calculation in Three-Dimensions,” Ballistic Research Laboratory Contract Report ARBRL-CR-00467.

    Google Scholar 

  • Mescall, J.F. (1974), “Shock Wave Propagation in Solids,” Structural Mechanics Computer Programs, W. Pilkey, S. Saczalski, and H. Schaeffer (eds.), University of Virginia Press, Charlottesville.

    Google Scholar 

  • Scharpf, F. (1983), Industrieanlagen-Betriebsgesellschaft, Munich, West Germany, private communication.

    Google Scholar 

  • Seaman, L., D.R. Curran and D.A. Shockey (1976), “Computational Models for Ductile and Brittle Fracture,” J. Appl. Phys., 47, 4814.

    Article  ADS  Google Scholar 

  • Seaman, L. and D.A. Shockey (1975), “Models for Ductile and Brittle Fracture for Two-Dimensional Propagation Calculations,” Army Materials and Mechanics Research Center Final Report AMMRC-CTR-75-2.

    Google Scholar 

  • Snow, P. (1982), “KEPIC-2,” Kaman Sciences Corporation Report No. K82-46U (R), August.

    Google Scholar 

  • Steinberg, D.J. and M.W. Guinan (1978), “A High-Strain-Rate Constitutive Model for Metals,” Lawrence Livermore Laboratory, Livermore, California, UCRL-80465.

    Google Scholar 

  • Tuler, F.R. and B.M. Butcher (1968), “A Criterion for the Time Dependence of Dynamic Fracture,” Int. J. Fract. Mech., 4, 431.

    Google Scholar 

  • Von Rieseman, W.A., J.A. Stricklin and W.E. Haisler (1974), “Nonlinear Continua” Structural Mechanics Computer Programs, W. Pilkey, S. Saczalski and H. Schaeffer (eds.), University of Virginia Press, Chariottesville.

    Google Scholar 

  • Weickert, C.A. and K.D. Kimsey (1983), “Three-dimensional Computer Simulation of a Linear Self-Forging Fragment Device,” Proc. Seventh International Symposium on Ballistics, Royal Institution of Engineers (KIvI), The Hague, The Netherlands.

    Google Scholar 

  • Wilkins, M.L. (1964), “Calculation of Elastic-Plastic Flow,” Method in Computational Physics, 3, B. Alder, S. Fernbach, and M. Rotenberg (eds.), Academic Press, NY.

    Google Scholar 

  • Zukas, J.A., et al. (1981), “Three-dimensional Impact Simulations: Resources and Results,” Computer Analysis of Large-Scale Structures, AMD, 49, K.C. Park and R.F. Jones (eds.), The American Society of Mechanical Engineers, New York.

    Google Scholar 

  • Zukas, J.A. and B.E. Ringers (1980), “Numerical Simulation of Impact Phenomena,” Proc. 1980 Summer Computer Simulation Conference, Simulation Councils, Inc., La Jolla, California, 307–310.

    Google Scholar 

  • Zukas, J.A. et al. (1982), Impact Dynamics, Wiley-Interscience, New York.

    Google Scholar 

  • Awerbuch, J. and S.R. Bodner (1974), “Analysis of the Mechanics of Perforation of Projectiles in Metallic Plates,” Int. J. Solids Struct., 10, 671.

    Article  Google Scholar 

  • Awerbuch, J. and S.R. Bodner (1977), “An Investigation of Oblique Perforation of Metallic Plates by Projectiles,” Exp. Mech., 17, 147.

    Article  Google Scholar 

  • Backman, M.E. and S.A. Finnegan (1973), “The Propagation of Adiabatic Shear,” Metallurgical Effects at High Strain Rates, R.W. Rohde et al. (eds.), Plenum, New York, 531.

    Google Scholar 

  • Backman, M.E. and W. Goldsmith (1978), “The Mechanics of Penetration of Projectiles into Targets,” Int. J. Engng. Sci., 16, 1.

    Article  Google Scholar 

  • Dienes, J.K. and J.W. Miles (1977), “A Membrane Model for the Response of Thin Plates Ballistic Impact,” J. Mech. Phys. Solids, 25, 237.

    Article  MATH  ADS  Google Scholar 

  • Joint Technical Coordinating Group for Munitions Effectiveness (Anti-Air), “Penetration Equations Handbook for Kinetic-Energy Penetrators, 61 JTCG/ME-77-16.

    Google Scholar 

  • Landkof, B. and W. Goldsmith (1983), “Petalling of Thin Metallic Plates during Penetration by Cylindro-Conical Projectiles,” Int. J. Solids Struct. (in press).

    Google Scholar 

  • Levy, N., and W. Goldsmith (1983), “Normal Impact and Perforation of Thin Plates by Hemispherically-Tipped Projectiles, I. Analytical Considerations,” submitted.

    Google Scholar 

  • Liss, J., W. Goldsmith and J.M. Kelly (1983), “A Phenomenological Penetration Model of Thin Plates,” Int. J. Impact Engng., 1, 321.

    Article  Google Scholar 

  • Olson, G.B., J.F. Mescall and M. Azrin (1980), “Adiabatic Deformation and Strain Localization,” Shock Waves and High-Strain-Rate Phenomena in Metals, Concepts and Applications, Ch. 14, M.A. Meyers and L.E. Murr (eds.), Plenum Press, New York, 221.

    Google Scholar 

  • Ravid, M. and S.R. Bodner (1983), “Dynamic Perforation of Viscoplastic Plates by Rigid Projectiles,” Int. J. Engng. Sci., 21, 577.

    Article  Google Scholar 

  • Recht, R.F. and T.W. Ipson (1963), “Ballistic Perforation Dynamics,” J. Appl. Mech., 30, 384.

    Article  ADS  Google Scholar 

  • Recht, R.F. (1978), “Taylor Ballistic Modelling Applied to Deformation and Mass Loss Determination,” Int. J. Mech. Sci., 16, 809.

    Google Scholar 

  • Seaman, L., D.R. Curran and D.A. Shockey (1976), “Computational Models for Ductile and Brittle Fracture,” J. Appl. Phys., 47, 4814.

    Google Scholar 

  • Sedgwick, R.T. et al. (1978), “Investigations in Penetration Mechanics,” Int. J. Engng. Sci., 16, 859.

    Article  Google Scholar 

  • Shockey, D.A., L. Seaman and D.R. Curran (1975), “A Computational Model for Shear Bands,” SRI Poulter Laboratory Technical Report 003-75.

    Google Scholar 

  • Tate, A. (1967), “A Theory for the Deceleration of Long Rods after Impact,” J. Mech. Phys. Solids, 15, 387.

    Article  ADS  Google Scholar 

  • Tate, A. (1978), “A Simple Hydrodynamic Model for the Strain Field Produced in a Penetration of a High Speed Long Rod Projectile,” Int. J. Engng. Sci., 16, 845.

    Article  Google Scholar 

  • Wilkins, M.L. (1964), “Calculation of Elastic-Plastic Flow,” Methods in Computational Physios, B. Alder et al. (eds.). Fundamental Methods in Hydrodynamics. Academic Press, New York, 211.

    Google Scholar 

  • Wilkins, M.L. (1978), “Mechanism of Penetration and Perforation,” Int. J. Engng. Sci., 16, 793.

    Article  Google Scholar 

  • Woodward, R.L. and M.E. DeMorton (1976), “Penetration of Targets by a Flat-Ended Projectile,” Int. J. Mech. Sci., 18, 119.

    Article  Google Scholar 

  • Woodward, R.L. (1982), “Penetration of Semi-Infinite Targets by Deforming Projectiles,” Int. J. Mech. Sci., 24, 73.

    Article  Google Scholar 

  • Zukas, J.A. et al. (1982), “Three-Dimensional Impact Simulations: Resources and Results,” Computer Analysis of Large Scale Structures, K.C. Park and R.F. Jones, Jr. (eds.), New York, ASME, AMD 49, 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, Dordrecht.

About this chapter

Cite this chapter

Kimsey, K.D. (1984). Calculation of Penetration. In: Nemat-Nasser, S., Asaro, R.J., Hegemier, G.A. (eds) Theoretical foundation for large-scale computations for nonlinear material behavior. Mechanics of elastic and inelastic solids 6, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6213-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6213-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6215-6

  • Online ISBN: 978-94-009-6213-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics