Skip to main content

Part of the book series: Mechanics of elastic and inelastic solids 6 ((MEIS,volume 6))

  • 419 Accesses

Abstract

The fundamental continuum aspects of the rate-independent elastic-plastic behavior of materials are discussed. First the general structure of the corresponding rate constitutive relations at finite strains and rotations is examined, bringing into focus the effect of plastically-induced material spin. The choice of stress and strain measures is then reviewed, and it is emphasized that all objective stress-rates equal the Jaumann rate plus terms linear in stress and deformation rate, when the current state is used as the reference state. The induced anisotropy due to stressing is shown to preclude an isotropic relation between the Jaumann rate of Cauchy (or Kirchhoff) stress and the deformation rate. The equations of the classical plasticity theory at finite strains and rotations are presented next, and questions of associative and non-associative flow rules, dilatancy and pressure-sensitivity, plastic anisotropy, Drucker’s postulate and its relation to normality and convexity, and finally the non-coaxiality of the plastic strain rate tensor and the stress tensor are discussed. Then some thermodynamic bases of both rate-dependent and rate-independent inelasticity are considered, emphasizing conditions under which flow potentials for inelastic strain-rates exist. Finally, the problem of strain-softening is briefly discussed, and it is pointed out that both for metals and geo-materials, such softening may often be the result of highly localized damage within the test specimen which no longer remains macroscopically homogeneous, and, hence, should not be regarded as a “representative sample.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asaro, R.J. (1979), “Geometrical Effects in the Inhomogeneous Deformation of Ductile Single Crystals,” Acta Met., 27, 445–453.

    Article  Google Scholar 

  • Asaro, R.J. (1983), “Crystal Plasticity,” J. Appl. Mech. (50th Anniv. Issue), 50, 921–934.

    Article  MATH  ADS  Google Scholar 

  • Bishop, J.F.W. and R. Hill (1951), “A Theory of the Plastic Distortion of a Polycrystalline Aggregate under Combined Stresses,” Phil. Mag., [7] 42, 414–427.

    MATH  MathSciNet  Google Scholar 

  • Christoffersen, J., M.M. Mehrabadi and S. Nemat-Nasser (1981), “A Micromechanical Description of Granular Material Behavior,” J. Appl. Mech., 48, 339–344.

    Article  MATH  ADS  Google Scholar 

  • Dafalias, Y.F. (1983), “On the Evolution of Structure Variables in Anisotropic Yield Criteria at Large Plastic Transformations,” Colloque International du C.N.R.S. No. 351 in Critères de Rupture des Matériaux à Structure Interne Orientée, Villard-de-Lans, France, June 1983, J.P. Boehler (ed.), Editions du C.N.R.S., Paris, in press.

    Google Scholar 

  • Dorris, J.F. and S. Nemat-Nasser (1982), “A Plasticity Model for Flow of Granular Materials under Triaxial Stress States,” Int. J. Solids Structures, 18(6), 497–531.

    Article  MATH  Google Scholar 

  • Drucker, D.C. (1950), “Some Implications of Work Hardening and Ideal Plasticity,” Q. Appl. Math., 7(4), 411–418.

    MATH  MathSciNet  Google Scholar 

  • Hallbauer, D.K., H. Wagner and G.W. Cook (1973), “Some Observations Concerning the Microscopic and Mechanical Bahaviour of Quartzite Specimens in Stiff, Triaxial Compression ests,” Int. J. Rook Mech. Min. Sci. & Geomech. Abstr., 10, 713–726.

    Article  Google Scholar 

  • Havner, K.S. (1982), “The Theory of Finite Plastic Deformation of Crystalline Solids,” in Mechanics of Solids: The Rodney Hill 60th Anniversary Volume, H.G. Hopkins and M.J. Sewell (eds.), Pergamon Press, Oxford, 265–302.

    Google Scholar 

  • Havner, K.S. and A.H. Shalaby (1977), “A Simple Mathematical Theory of Finite Distortional Latent Hardening in Single Crystals,” Proc. Roy. Soc. London, A358, 47–70.

    ADS  MathSciNet  Google Scholar 

  • Hill, R. (1958), “A General Theory of Uniqueness and Stability in Elastic-Plastic Solids,” J. Mech. Phys. Solids, 6, 236–249.

    Article  MATH  ADS  Google Scholar 

  • Hill, R. (1959), “Some Basic Principles in the Mechanics of Solids without a Natural Time,” J. Mech. Phys. Solids, 7, 209–225.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Hill, R. (1967), “The Essential Structure of Constitutive Laws for Metal Composites and Polycrystals,” J. Mech. Phys. Solids, 15, 79–95.

    Article  ADS  Google Scholar 

  • Hill, R. (1968), “On Constitutive Inequalities for Simple Materials. I,” J. Mech. Phys. Solids, 16, 229–242.

    Article  MATH  ADS  Google Scholar 

  • Hill, R. (1968), “II,” J. Mech. Phys. Solids, 16, 315–322.

    Article  MATH  ADS  Google Scholar 

  • Hill, R. (1972), “On Constitutive Macro-Variables for Heterogeneous Solids at Finite Strain,” Proc. Roy. Soc. London, A326, 131–147.

    ADS  Google Scholar 

  • Hill, R. (1978), “Aspects of Invariance in Solid Mechanics,” in Advances in Applied Mechanics, C.-S. Yih (ed.), Academic Press, New York, 18, 1–75.

    Google Scholar 

  • Horii, H. and S. Nemat-Nasser (1983), “Compression-Induced Micro-Crack Growth in Brittle Solids: Axial Splitting and Shear Failure,” submitted for publication.

    Google Scholar 

  • Iwakuma, T. and S. Nemat-Nasser (1982), “An Analytical Estimate of Shear Band Initiation in a Necked Bar,” Int. J. Solids Structures, 18(1), 69–83.

    Article  MATH  Google Scholar 

  • Loret, B. (1983), “On the Effects of Plastic Rotation in the Finite Deformation of Anisotropic Elastoplastic Materials,” Mechanics of Materials, 2, 287–304.

    Article  Google Scholar 

  • Mandel, J. (1947), “Sur les Lignes de Glissement et le Calcul des Déplacements dans la Déformation Plastique,” Comptes rendus de l’Academie des Sciences, 225, 1272–1273.

    MATH  MathSciNet  Google Scholar 

  • Mandel, J. (1965), “Généralisation de la Théorie de Plasticité de W.T. Koiter,” Int. J. Solids Structures, 1(3), 273–295.

    Article  Google Scholar 

  • Mandel, J. (1971), Plasticité Classique et Viscoplasticité, Courses and Lectures, No. 97, CISM, Udine, Springer, New York.

    Google Scholar 

  • Martin, J.B. (1975), Plasticity: Fundamentals and General Results, M.I.T. Press, Cambridge, MA.

    Google Scholar 

  • Mogi, K. (1966), “Pressure Dependence of Rock Strength and Transition from Brittle Fracture to Ductile Flow,” Bull. Earthquake Res. Inst., 44, 215–232.

    Google Scholar 

  • Nemat-Nasser, S. (1975), “Continuum Bases for Consistent Numerical Formulations of Finite Strains in Elastic and Inelastic Structures,” in Finite Element Analysis of Transient Nonlinear Structural Behavior, T. Belytschko, J.R. Osias and P.V. Marcal (eds.), AMD-14, ASME, New York, 85–98.

    Google Scholar 

  • Nemat-Nasser, S. (1980), “On Constitutive Behavior of Fault Materials,” in Solid Earth Geophysics and Geotechnology, S. Nemat-Nasser (ed.), AMD-42, ASME, New York, 31–37.

    Google Scholar 

  • Nemat-Nasser, S. (1982), “On Finite Deformation Elasto-Plasticity,” Int. J. Solids Structures, 18(10), 857–872.

    Article  MATH  Google Scholar 

  • Nemat-Nasser, S. (1983), “On Finite Plastic Flow of Crystalline Solids and Geomaterials,” J. Appl. Mech. (50th Anniv. Issue), 50, 1114–1126.

    Article  MATH  ADS  Google Scholar 

  • Nemat-Nasser, S. and H. Horii (1982), “Compression Induced Nonplanar Crack Extension with Application to Splitting, Exfoliation and Rockburst,” J. Geophys. Res., 87(B8), 6805–6821.

    Article  ADS  Google Scholar 

  • Nemat-Nasser, S., M.M. Mehrabadi and T. Iwakuma (1980), “On Certain Macroscopic and Microscopic Aspects of Plastic Flow of Ductile Materials,” in Three-dimensional Constitutive Relations and Ductile Fracture, Proc. IUTAM Symp., Dourdan, France, S. Nemat-Nasser (ed.), North-Holland Publ. Co., 157–172.

    Google Scholar 

  • Nemat-Nasser, S. and A. Shokooh (1980), “On Finite Plastic Flows of Compressible Materials with Internal Friction,” Int. J. Solids Structures, 16(6), 495–514.

    Article  MATH  Google Scholar 

  • Rice, J.R. (1971), “Inelastic Constitutive Relations for Solids: An Internal-Variable Theory and Its Application to Metal Plasticity,” J. Mech. Phys. Solids, 19, 433–455.

    Article  MATH  ADS  Google Scholar 

  • Rice, J.R. (1975), “Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms,” Chapter 2 in Constitutive Equations in Plasticity, A.S. Argon (ed.), M.I.T. Press, Cambridge, MA, 23–79.

    Google Scholar 

  • Rowshandel, B. and S. Nemat-Nasser (1983), “Finite Strain Rock Plasticity: Stress Triaxiality, Pressure, and Temperature Effects,” Earthquake Research and Engineering Laboratory Technical Report No. 83-5-53, Department of Civil Engineering, Northwestern University, Evanston, IL.

    Google Scholar 

  • Rudnicki, J.W. and J.R. Rice (1975), “Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant Materials,” J. Mech. Phys. Solids, 23, 371–394.

    Article  ADS  Google Scholar 

  • Spencer, A.J.M. (1964), “A Theory of the Kinematics of Ideal Soils under Plane Strain Conditions,” J. Mech. Phys. Solids, 12, 337–351.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Spencer A.J.M. (1982), “Deformation of Ideal Granular Materials,” Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, H.G. Hopkins and M.J. Sewell (eds.), Pergamon Press, Oxford, 607–652.

    Google Scholar 

  • Stören, S. and J.R. Rice (1975), “Localized Necking in Thin Sheets,” J. Mech. Phys. Solids, 23, 421–441.

    Article  MATH  ADS  Google Scholar 

  • Taylor, G.I. and C.F. Elam (1926), “The Distortion of Iron Crystals,” Proc. Roy. Soc. London, A112, 337–361.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, Dordrecht.

About this chapter

Cite this chapter

Nemat-Nasser, S. (1984). Theoretical Foundations of Plasticity. In: Nemat-Nasser, S., Asaro, R.J., Hegemier, G.A. (eds) Theoretical foundation for large-scale computations for nonlinear material behavior. Mechanics of elastic and inelastic solids 6, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6213-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6213-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6215-6

  • Online ISBN: 978-94-009-6213-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics