Skip to main content

In Vitro Systems for Studying Nitrogen Fixation

  • Chapter
  • 184 Accesses

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 10))

Abstract

Although almost eighty percent of the earth’s atmosphere is molecular nitrogen, plants are unable to use directly this vast nitrogen source for growth. Instead, they depend upon nitrogen being available in a fixed form such as ammonium or nitrate. Under agricultural conditions, the amount of fixed nitrogen removed from the ecosystem is usually greater than the nitrogen input. Consequently, agricultural productivity is often limited by the input of fixed nitrogen to the soil (I). The addition of combined nitrogen to agricultural soils results primarily from either biological or industrial nitrogen fixation, with present estimates of the annual turnover of nitrogen in the biosphere ranging from 100 million (2) to 200 million metric tons (3). Of this, sixty to seventy percent comes from biological sources. Although the level of biological nitrogen fixation has remained constant during the present century, there have been increasing additions of combined nitrogen to agricultural soils as nitrogenous fertilisers produced by industrial fixation. Currently, world agricultural productivity is in moderate excess of the world’s average food requirements. However, an increase of nitrogen input into agricultural soils will be necessary to support the projected doubling of the world’s population that will occur by early next century. Some of this nitrogen input may be achieved by exploiting both industrial and biological nitrogen fixation more effectively and extensively than in the past, but the high energy costs and environmental impact of industrial fixation have led many to argue for the greater use of biological nitrogen fixation to provide the increased nitrogen input (4).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Subba Rao NS. 1980 Crop response to microbial inoculation. In: NS Subba Rao, ed, Recent Advances in Biological Nitrogen Fixation. Oxford and 1BH Publishing Co, New Delhi, Bombay, Calcutta, pp. 406–420.

    Google Scholar 

  2. Delwfche CC. 1970. The nitrogen cycle. In: The Biosphere. A Scientific American Book. WH Freeman and Co., San Francisco, pp. 69–80.

    Google Scholar 

  3. Burns RC, Hardy RWF. 1975. Nitrogen Fixation in Bacteria and Higher Plants. Springer Verlag, New York.

    Google Scholar 

  4. Postgate JR. 1980 Nitrogen fixation in perspective. [n:WDP Stewart and JR Gal Ion, eds, Nitrogen Fixation. Academic Press, London, pp. 423–434.

    Google Scholar 

  5. Delwiche CC. 1978. Legumes - past, present and future. Bioscience 28 580–585.

    Google Scholar 

  6. Peters GA. 1978. Blue-green algae and algae associations. Bioscience 28 580–585.

    Google Scholar 

  7. Vose PB. 1983. Developments in non-legume nitrogen fixing systems. Can. J. Microbiol. 29 837–850.

    Google Scholar 

  8. DcJbereiner J, Campelo AB. 1977. Importance of legumes and their contribution to tropical agriculture. In: RWF Hardy and AH Gibson,eds, A Treatise on Dinitrogen Fixation, Section IV, Agronomy and Ecology. John Wiley and Sons, Inc., New York. pp. 191–220.

    Google Scholar 

  9. Mulder EG, Lie TA, Houwers A. 1977. The importance of legumes under temperate conditions, In: RWF Hardy and AH Gibson, eds, A Treatise on Dinitrogen Fixation, Section IV, Agronomy and Ecology, John Wiley and Sons Inc., New York. pp. 221–242.

    Google Scholar 

  10. Watanabe I, Lee KK. 1977. Non-symbiotic nitrogen fixation in rice and rice fields. In: A Ayanaba and PJ Dart, eds, Biological Nitrogen Fixation in Farming Systems of the Tropics, John Wiley and Sons Inc., New York. pp. 289–305.

    Google Scholar 

  11. D6bereiner J, De-Pol Ii H. 1980 Diazotrophlc rhizocoenoses. In: WDP Stewart and JR Gallon, eds, Nitrogen Fixation. Academic Press, London, pp. 301–333.

    Google Scholar 

  12. Bond G. 1977. Some reflections on AInus-type root nodules, f n: W Newton, JR Postgate and C Rodriguez-Barrueco,eds, Recent Developments in Nitrogen Fixation. Academic Press, London.,pp. 531–537.

    Google Scholar 

  13. Dawson JO. 1983. Dinitrogen fixation in forest ecosystems. Can. J.. Microbiol. 29 979–992.

    CAS  Google Scholar 

  14. Wittwer SM. 1977. Agricultural productivity and biological nitrogen fixation - an international view. In: A Hollaender, ed, Genetic Engineering for Nitrogen Fixation, Basic Life Sciences, 9. Plenum Press, New York and London, pp. 515–520.

    Google Scholar 

  15. Gutshick VP. 1978. Energy and nitrogen fixation. Bioscience 28 571–575.

    Google Scholar 

  16. Brill WJ. 1981. Agricultural microbiology. Scient. Amer. 245 146–156.

    Google Scholar 

  17. Giles KL, Vasil IK. 1980 Nitrogen fixation and plant tissue culture. Internat. Review Cytol. Suppl. 1IB 81–99.

    Google Scholar 

  18. Torrey JG. 1978. in vitro methods in the study of symbiosis. In: TA Thorpe, ed, Frontiers of Plant Tissue Culture. Univ. of Calgary Press, Calgary, Alberta, pp. 373–380.

    Google Scholar 

  19. Davey MR, Cocking EC 1980 Tissue and cell cultures and bacterial nitrogen fixation. In: NS Subba Rao, ed, Recent Advances in Biological Nitrogen Fixation. Oxford and IBH Publishing Co,New Delhi, Bombay, Calcutta, pp. 281–324.

    Google Scholar 

  20. Fahraeus G. 1957. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. gen. Microbiol. J_6 374–381.

    Google Scholar 

  21. Callaham DA, Torrey JG. 1981. The structural basis for infection of root hairs of Tri foli urn repens by Rhizobium. Can. J. Bot. 59. 1647–16 64.

    Google Scholar 

  22. Rolfe BG, Gresshoff PM, Shine J. 1980 Rapid screening for symbiotic mutants of Rhizobium and white clover. Plant Sci. Lett. _[9 277–284.

    Google Scholar 

  23. Wong CH, Pankhurst CE, Kondorosi A, Broughton WJ. 1983. Morphology of root nodules and nodule-1 ike structures formed by Rhizobium and Agrobacterium strains containing a Rhizobium melIloti megaplasmid. J. Cel1 Biol. 97 787–794.

    CAS  Google Scholar 

  24. Van Brussel A, Tak T, Wetselaar A, Pees E, Wijffelman CA. 1982. Small leguminosae as test plants for nodulation of Rhizobium legumin¬osarum and other rhizobia and agrobacteria harbouring a Ieguminosarum sym-pIasmid. Plant Sci. Lett. 27 317–325.

    Google Scholar 

  25. Lewis KH, McCoy E. 1933. Root nodule formation on the garden bean, studied by a technique of tissue culture. Bot. Gaz. 95 316–329.

    Google Scholar 

  26. Raggio M, Raggio N. 1956. A new method for the cultivation of isolated roots. Physiol. Plant. 9 466–469.

    Google Scholar 

  27. Raggio M, Raggio N, Torrey JG. 1957. The nodulation of isolated leguminous roots. Amer. J. Bot. 44 325–334.

    Google Scholar 

  28. OTHara GW, Davey MR, Lucas JA. 1983. Association between the nitrogen fixing bacterium Azospirillum brasilense and excised plant roots. Z. Pflanzenphysiol. JJ2 1–13.

    Google Scholar 

  29. Lie TA. 1971. Nodulation of rooted leaves in leguminous plants. Plant SoiI 34 663–673.

    Google Scholar 

  30. Lie TA. 1974. Environmental effects on nodulation and symbiotic nitrogen fixation. In: A Quispel, ed, The Biology of Nitrogen Fixation. North-Holland Research Monographs, Vol 33. pp. 555–582.

    Google Scholar 

  31. Sutton WD, Jepsen NM. 1975. Studies with detached lupin root nodules in culture. Plant Physiol. 56 665–670.

    PubMed  CAS  Google Scholar 

  32. Velicky I, La Rue TA. 1967. Changes in soybean root culture induced by Rh?zobIum japonicum. Naturwissenschaften 54 96.

    Google Scholar 

  33. Holsten RD, Burns RC, Hardy RWF, Hebert RR. 1971. Establishment of symbiosis between Rhizobium and plant cells in vitro. Nature 232 173–176.

    PubMed  CAS  Google Scholar 

  34. Holsten RD, Hardy RWF. 1972. Nitrogen fixing plant-bacterial symbiosis in tissue culture. In: A San Pietro,ed, Methods in Enzymology, Photosynthesis and Nitrogen Fixation, Part B. Academic Press, New York. pp. 497–504.

    Google Scholar 

  35. Reporter M. 1976. Synergetic cultures of Glycine max root cells and jrhizobia separated by membrane filters. Plant Physiol. 57. 651–655.

    PubMed  CAS  Google Scholar 

  36. Reporter M. 1978. Hydrogen (H) evolution by(rhizobia after synergetic culture with soybean cell suspensions. Plant Physiol. 6J 753–756.

    Google Scholar 

  37. Reporter M, Hermina N. 1975. Acetylene reduction by transfllter suspension cultures of Rhi zobi um japonicum. Biochem. Biophys. Res. Commun. 64 II26–1 133.

    Google Scholar 

  38. Bednarski MA, Reporter M. 1978. Expression of rhizobial nitrogenase: Influence of plant cell conditioned medium. Appl. Environ. Microbiol. 36 115–120.

    Google Scholar 

  39. Child JJ. 1975. Nitrogen fixation by a Rhizobium sp. in association with non-leguminous plant cell cultures. Nature 253 350–351.

    CAS  Google Scholar 

  40. Child JJ, La Rue TA. 1974. A simple technique for the establishment of nitrogenase in soybean callus culture. Plant Physiol. 53 88–90.

    PubMed  CAS  Google Scholar 

  41. Child JJ, La Rue TA. 1975. Legume-Rhizobium symbiosis in tissue culture: technique and application, fn: WE Newton and CJ Nyman,eds, Proceedings of the First International Symposium on Nitrogen Fixation. Washington State Univ. Press, Pullman, Washington, pp. 447–455.

    Google Scholar 

  42. Phillips DA. 1974. Factors affecting the reduction of acetylene by Rhizobium-soybean cell associations in vitro. Plant Physiol. 53 67–72.

    PubMed  CAS  Google Scholar 

  43. Ranga Rao V, Subba Rao NS. 1976. Studies on the infection of legume root callus with Rhizobi um. Z. PfIanzenphysio1. 80 14–20.

    Google Scholar 

  44. Werner D, Oberlies G. 1975. Nitrogenase activity in associations of Rhizobi um 1 up? ni and Lupinus polyphyl1 us tissue cultures. Naturwissen- schaften 62 350–351.

    CAS  Google Scholar 

  45. Ranga Rao V, Sopory SK, Subba Rao NS. 1974. Establishment of symbiosis in vitro between Rh?zobium and pea root callus. Curr. Sci. 43 503–505.

    Google Scholar 

  46. Ranga Rao V. 1976. Nitrogenase activity in Rhi zobIum associated with leguminous and non-Ieguminous tissue cultures. Plant Sci. Lett. 6 77–83.

    Google Scholar 

  47. Scowcroft WR, Gibson AH. 1975. Nitrogen fixation by Rhizobium associated with tobacco and cowpea cell cultures. Nature 253 51–52.

    Google Scholar 

  48. La Rue TA, Kurz WGW, Child JJ. 1975. Methods for growing nitrogen fixing bacteria separated from plant cells. Can. J. Microbiol. 21 1884–1886.

    Google Scholar 

  49. Storey R, Rainer K, Pope L, Reporter M. 1979. in vitro nitrogenase activity of Rhi zobi um japonicum affected by conditioned medium from cultured plant cells. Plant Sci. Lett. _14 253–258.

    Google Scholar 

  50. Storey R, Reporter M. 1980 Plant peptidog Iucans affecting the phenotypic expression of rhizobial nitrogenase. Aust. J.Plant. Physiol. 7 251–260.

    Google Scholar 

  51. Reporter M, Skotnicki ML, Rolfe BG. 1980 Role of plant cell conditioned medium in the phenotypic expression of nitrogenase activity of Rhizobium trifoli i strain T). Aust. J. Biol. Sci. 33 613–621.

    Google Scholar 

  52. Hermina N, Reporter M. 1977. Root hair cell enhancement in tissue cultures from soybean roots: a useful model system, in vitro Rhizobium symbiosis. Plant Physiol. 59 97–102.

    PubMed  CAS  Google Scholar 

  53. Gibson AH, Scowcroft WR, Child JJ, Pagan JD. 1976. Nitrogenase activity in cultured Rhi zob i um sp. strain 32HI. Nutritional and physical considerations. Arch.Mikrobiol. 108 45–54.

    Google Scholar 

  54. Schetter C, Hess D. 1977. Nitrogenase activity in in vitro associations between callus tissues of non-1eguminous horticuIturaI plants and Rhizobium. Plant Sci. Lett. £ 1–5.

    Google Scholar 

  55. Lustig B, Plische W, Hess D. 1980 Nitrogenase activity in a transfilter culture of Rhizobiwith a non-1 egumi nous plant callus culture: transfer of fixed N? from bacteria to Portulaca callus. Experientia 36 1386. Z

    Google Scholar 

  56. Hess D, Federolf H-A, Wurfel A, Dressier K. 1983. Induction of nitrogenase activity in Rhizobium 32HI by conditioned media from associations of wheat with Rhi zobi um 32HI and Rh. tri foIi i. Z. PfIanzenphysiol. I 11 189–202.

    Google Scholar 

  57. Hess D, Maier H, Schol1 M, Kemmner J. 1983. Nitrogenase activity induced by wheat plants: competition experiments between Rhizobium 32HI, Rhizobium japonicum, and Escherichia colj. Z. PfIanzenphysiol. Ill 213–221.

    Google Scholar 

  58. Hess D, Go+z E-M. 1977. Nitrogenase activity induced by Petunia piantlets. Z. Pflanzenphysiol. 85 185–188.

    Google Scholar 

  59. Gotz E-M, Hess D. 1980 Nitrogenase activity induced by wheat plants (Triticum aestivum). Z. PfIanzenphysio]. £8 453–458.

    Google Scholar 

  60. Hess D, Kiefer S. 1981. Induction of bacterial nitrogenase activity in in vitro associations: a comparison of the inducing capabilities of Triticum aestivum and Sorghum nigricans. Z. PfIanzenphyslol. 101 15–24.

    CAS  Google Scholar 

  61. Hess D, Schatzle H, Dressier K. 1981. in vitro associations of tomato plants and Rhizobium: induction of nitrogenase activity. Experientia 37 961–962.

    Google Scholar 

  62. Hess D, Federolf H-A, Wiirfel A, Dressier K. 1983. Induction of nitrogenase activity in Rhizobium 32HI by conditioned media from associations of wheat with Rhi zob i um 32HI and Rh. tri foli i. Z. Pflanzenphysiol. I I I 203–211.

    Google Scholar 

  63. Gresshoff PM. 1982. Legume cell culture to study plant-bacterial Interaction. In: A Fujiwara,ed, Plant Tissue Culture 1982. Proc. 5th. Intl. Cong. Plant Tissue and Cell Culture. Japanese Association of Plant Tissue Culture, Tokyo, pp. 661–662.

    Google Scholar 

  64. Pagan JD, Child JJ, Scowcroft WR, Gibson AH. 1975. Nitrogen fixation by Rhizobium cultured on a defined medium. Nature 256 406–407.

    CAS  Google Scholar 

  65. Kurz WGW, La Rue TA. 1975, Nitrogenase activity in rhizobia in absence of plant host. Nature 256 407–408.

    CAS  Google Scholar 

  66. McComb JA, Elliott J, Dilworth MJ. 1975. Acetylene reduction by Rhizobi um in pure culture. Nature 256 409–410.

    CAS  Google Scholar 

  67. Keister DL.I975. Acetylene reduction by pure cultures of Rhizobium. J. Bacteriol. J23 1265–1268.

    Google Scholar 

  68. Tjepkema J, Evans HJ. 1975. Nitrogen fixation by free-living Rhizobium in a defined liquid medium. Biochem. Biophys. Res. Commun. 65 625–628.

    Google Scholar 

  69. Evans WR, Keister DL. 1976. Reduction of acetylene by stationary cultures of free-living Rhizobium sp. under atmospheric oxygen levels. Can. J. Microbiol. 22 949–952.

    Google Scholar 

  70. Keister DL, Ranga Rao V. 1976. The physiology of acetylene reduction in pure cultures of Rhizobium. In: C Rodriguez-Burrueco et al, eds, Proceedings of the Second International Symposium on Nitrogen Fixation. Academic Press, New York.

    Google Scholar 

  71. Child JJ. 1980 Nitrogen fixation by free-living Rh i zobi um and Its Implications. In: NS Subba Rao, ed, Recent Advances in Biological Nitrogen Fixation. Oxford and IBH Publishing Co., New Delhi, Bombay, Calcutta, pp 325–343.

    Google Scholar 

  72. Davey MR. 1983. Recent developments in the culture and regeneration of plant protoplasts. In: I Potrykus et al, eds, Protoplasts 1983. Proceedings 6th International Protoplast Symposium, Basel. Birkhauser Verlag, Basel, Boston, Stuttgart, pp. 19–29.

    Google Scholar 

  73. Davey MR, Kumar A. 1983. Higher plant protoplasts: retrospect and prospect. In: KL Giles, ed, Plant Protoplasts. Internat. Rev. Cytol. Suppl. 16. Academic Press, New York, pp 219–299.

    Google Scholar 

  74. Evans DA, Bravo JE. 1983. Plant protoplast isolation and culture. In: Ibid. pp. 33–53.

    Google Scholar 

  75. Davey MR, Cocking EC, Bush E. 1973. Isolation of legume root nodule protoplasts. Nature 244 460–461.

    Google Scholar 

  76. Vasil IK, Vasi I V, HubbelI DH. 1977. Engineered plant cell or fungal association with bacteria that fix nitrogen.fn: A Hollaender, ed, Genetic Engineering for Nitrogen Fixation. Plenum Press, New York, pp. 197–211.

    Google Scholar 

  77. Syono K, Nagata T, Suzuki M, Kajita S, Matsui C. 1979. Fusion of pea root nodule protoplasts with tobacco mesophyll protoplasts. Z. Pflanzenphysiol. 95 449–457.

    Google Scholar 

  78. Davey MR, Pearce N, Cocking EC. 1980 Fusion of legume root nodule protoplasts with non-legume protoplasts: U1trastructuraI evidence

    Google Scholar 

  79. Broughton WJ, Wooi KC, Hoh CH. 1976. Acetylene reduction by legume root nodule protoplasts. Nature 262 208–209.

    CAS  Google Scholar 

  80. Wooi KC, Broughton WJ. 1979. Isolation and metabolism of Vigna unguiculata root nodule protoplasts. Planta 145 487–495.

    CAS  Google Scholar 

  81. Gresshoff PM, Skotnicki ML, Eadie JF, Rolfe BG. 1977. Viability of Rh i zob i um tri folM bacteroids from clover root nodules. Plant Sci. Lett. JO 299–304.

    Google Scholar 

  82. Gresshoff PM, Rolfe BG. 1978. Viability of Rhizobium bacteroids isolated from soybean nodule protoplasts. Planta 142 329–333.

    Google Scholar 

  83. Tsien HC, Cain PS, Schmidt EL. 1977. Viability of Rhizobium bacteroids. Appl. Environ. Microbiol. 34 854–856.

    Google Scholar 

  84. Rolfe BG, Gresshoff PM. 1980 Rhizobium trifoli i mutant interactions during establishment of nodulation in white clover. Aust. J. Biol. Sci. 33 491–504.

    Google Scholar 

  85. Evans HJ, Barber LE. 1977. Biological nitrogen fixation for food and fiber production. Science 197 332–339.

    PubMed  CAS  Google Scholar 

  86. Holl FB. 1983. Plant genetics: manipulation of the host. Can. J. Microbiol. 29 945–953.

    Google Scholar 

  87. D6bereiner J. 1978. Potential for nitrogen fixation in tropical legumes, and grasses. In: J Dobereiner, RH Burris and A Hollaender, eds, Limitations and Potentials for Biological Nitrogen Fixation in the Tropics. Basic Life Sciences 10. Plenum Press, New York and London, pp. 13–24.

    Google Scholar 

  88. Burris RH. 1977. A synthesis paper on non-1eguminous nitrogen fixing systems. In: W Newton, JR Postgate and C Rodriguez-Barrueco, eds, Recent Developments in Nitrogen Fixation. Academic Press, London, pp. 487–51 I.

    Google Scholar 

  89. Gibson AH, Scowcroft WR, Pagan JD. 1977. Nitrogen fixation in plants: an expanding horizon? In: Ibid. pp. 387–417.

    Google Scholar 

  90. Patriquin DG, Dobereiner J, Jain DK. 1983. Sites and processes of association between diazotrophs and grasses. Can. J. Microbiol. 29 900–915.

    Google Scholar 

  91. Smith RL, Bouton JH, Schank SC, Quesenberry KH, Tyler ME, Gaskins MH, LittelI RC. 1976. Nitrogen fixation in grasses associated with SpiriI Ium Iipoferum. Science J93 1003–1005.

    Google Scholar 

  92. Taylor RW. 1979. Response of two grasses to inoculation with Azospi riI Ium spp. in a Bahamian soil. Trop. Agricult. (Trinidad). 56 361–365.

    Google Scholar 

  93. Tien TM, Gaskins MH, HubbelI DH. 1979. Plant growth substances produced by Azospi rI 11um brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Envir. Microbiol. 37 1016–1024.

    Google Scholar 

  94. Hess D. 1982. Induction of nitrogenase activity in Azospi ri11um by wheat. Experientia Suppl. 42 69–74.

    CAS  Google Scholar 

  95. UmaIi-Garci a M, Hubbell DH, Gaskins MH, Dazzo FB. 1980 Association of Azospi riI Ium with grass roots. Appl. Envir. Microbiol. 3£ 219–226.

    Google Scholar 

  96. Martin JK. 1977. Factors influencing the loss of organic carbon from wheat roots. Soil Biol. Biochem. £ 1–7.

    Google Scholar 

  97. O’Hara GW. 1981. Establishment and activity of an association between the dinitrogen fixing bacterium AzospiriI Ium and cereal roots under temperate conditions. Ph.D. Thesis, Univ. of Nottingham.

    Google Scholar 

  98. Lakshml VA, Rao S, Vijayalaksmi K, Lakshmi Kumari M, Tilak KVBR, Subba Rao NS. 1978. Establishment and survival of Spi rillum Lipoferum. Proc. Indian Acad. Sci. Sect. B. 86 397–404.

    Google Scholar 

  99. Vasil V, Vasil IK, Zuberer DA, Hubbell DH. 1978. Forced association of Spi ri11um 1ipoferum with tissue cultures of some tropical grasses. In: J.Dobereiner, RH Burris and A Hollaender, eds, Limitations and Potentials for Biological Nitrogen Fixation in the Tropics. Plenum Press, New York. pp. 351–352.

    Google Scholar 

  100. Vasil IK, Vasil V, White DWR, Berg HR. 1979. Somatic hybridisation and genetic manipulation in plants, fn: TK Scott, ed, Plenum Press, New York. pp. 63–84.

    Google Scholar 

  101. Vasil V, Vasil IK, Zuberer DA, Hubbell DH. 1979. The biology of AzospIri11um-sugarcane association, f. Establishment of the association. Z. Pflanzenphysiol. £5 141–147.

    Google Scholar 

  102. Child JJ, Kurz WGW. 1978. Inducing effect of plant cells on nitrogenase activity by SpfrfI Ium and Rhizobium in vitro. Can. J. Microbiol. 24 143148.

    Google Scholar 

  103. Berg RH, Vasil V, Vasil IK. 1979, The biology of Azospiri11um-sugarcane association. If. U1trastructure. Protoplasma 101 143163.

    Google Scholar 

  104. Berg RH, Tyler ME, Novick NJ, Vasil V, Vasil IK. 1980 Biology of AzospIri1 Ium-sugarcane association: enhancement of nitrogenase activity. Appl. Envir. Microbiol. 39 642–649.

    Google Scholar 

  105. Baker D, Newcomb W, Torrey JG. 1980 Characterizatlon of an Ine/fectlve actlnorhizal microsymbiont, Frankia sp. EuII (Actinomycetales). Can. J. Microbiol. 26 1072–1089.

    Google Scholar 

  106. Callaham D, Del Tredlci P, Torrey JG. 1978. Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science j££ 899–902.

    Google Scholar 

  107. Berry A, Torrey JG. 1979. Isolation and characterisat ion in vivo and in vitro of an act Inomycetous endophyte from AInus rubra Bong. In: JC Gordon et al, eds, Symbiotic Nitrogen Fixation in the Management of Temperate Forests. Forest Res. Lab. Oregon State Univ., Corvallis. pp. 69–83.

    Google Scholar 

  108. Baker D, Torrey JG, Kidd GH. 1979. Isolation by sucrose density fractlonation and cultivation in vitro of actinomycetes from nitrogen- fixing root nodules. Nature 281 76–78.

    Google Scholar 

  109. Tjepkema JD, Ormerod W, Torrey JG. 1980 Vesicle formation and acetylene reduction In Frankia sp. CPIl cultured in defined nutrient media. Nature 287 633–635.

    Google Scholar 

  110. Tjepkema JD, Ormerod W, Torrey JG. 1981. Factors affecting vesicle formation and acetylene reduction (nitrogenase activity) in Frankia sp. CplI. Can. J. Microbiol. 27 815–823.

    Google Scholar 

  111. Torrey JG, Tjepkema JD, Turner GL, Bergersen FJ, Gibson AH. 1981. Dinitrogen fixation by cultures of Franki’a sp. Cplf demonstrated by N2 incorporation. Plant Physiol. 68 983–984.

    PubMed  CAS  Google Scholar 

  112. Goforth PL, Torrey JG, 1977. The development of isolated roots of Comptonia peregrina (Myricaceae) in culture. Amer. J. Bot. 64 476–482.

    Google Scholar 

  113. Knowlton S, Berry A, Torrey JG. 1980 Evidence that associated soil bacteria may influence root hair infection of actinorhizal plants by Frankia. Can. J. Microbiol. 26 971–977,

    Google Scholar 

  114. Becking JH. 1965. in vitro cultivation of Alder root-nodule tissue containing the endophyte. Nature 207 885–887.

    Google Scholar 

  115. Becking JH. 1975. Nitrogen fixation in some natural ecosystems in Indonesia. In: PS Nutman, ed, Symbi otic Nitrogen Fixation in Plants. Cambridge University Press, Cambridge. pp. 539–550.

    Google Scholar 

  116. Becking JH. 1976. Actlnomycete symbioses In non-legumes. In: WE Newton and CJ Nyman, eds, Proceedings of the 1st International Symposium on Nitrogen Fixation. Washington State Univ. Press, Pullman, pp. 581–591.

    Google Scholar 

  117. Becking JH. 1977. Endophyte and association establishment in non-leguminous nitrogen-fixing plants. In: W Newton, JR Postgate and C Rodrlgues-Barrueco, eds, Recent Developments in Nitrogen Fixation. Academic Press, London, pp. 551–567.

    Google Scholar 

  118. Becking JH. 1977. Dinitrogen fixing! associations In higher plants other than legumes. In: RWF Hardy and WS Silver, eds, A Treatise on Dinitrogen Fixation, Section III, Biology. John Wiley and Sons, Inc., New York. pp. 385–275.

    Google Scholar 

  119. Strand R, Laetsch WM.]977. Cel1 and endophyte structure of the nitrogen-fixing root nodules of Ceanothus integerrimus H.and A. I. Fine structure of the nodule and Its endosymbiont. Protoplasma 93 165–178.

    Google Scholar 

  120. Strand R, Laetsch WM. 1977. Cell and endophyte structure of the nitrogen fixing root nodules of Ceanothus integerrimus H. and A. II. Progress of the endophyte Into young cells of the growing nodule. Protoplasma 93 179–190.

    Google Scholar 

  121. Rodgers GA, Stewart WDP. 1977. The cyanophyte-hepatic symbiosis. I. Morphology and physiology. New Phytol. 78 441–458.

    Google Scholar 

  122. Bonnett HT, Silvester WB. 1981. Specificity in the Gunnera-Nostoc endosymbIosis. New Phytol. 89 121–128.

    CAS  Google Scholar 

  123. Enderlin CS, Meeks JC. 1983. Pure culture and reconstitution of the Anthoceros-Nostoc symbiotic association. Planta 158 157–165.

    CAS  Google Scholar 

  124. Berliner, MD. 1983. Protoplasts of non-vascular plants. In: KL Giles, ed, Plant Protoplasts. Internat. Review Cytol. Suppl. 16. Academic Press, New York. pp. 21–31.

    Google Scholar 

  125. Carlson PS, ChaJeff RS. 1974. Forced association between higher plant and bacterial cells in vitro. Nature 252 393–393.

    Google Scholar 

  126. Carlson PS, Chaleff RS. 1975. Heterogeneous associations of cells formed in vitro. In: L Ledouxj, ed, Genetic Manipulations with Plant Material. Plenum Press, pp. 245–261.

    Google Scholar 

  127. Chaleff RS, Carlson PS. 1975. Higher plant cells as experimental organisms. In: R Markham et al, eds, Modification of the Information Content of Plant Cells. 2nd John Innes Symposium. North Holland/ American Elsevier. pp. 197–214.

    Google Scholar 

  128. Davey MR, Cocking EC. 1972. Uptakejof bacteria by isolated higher plant protoplasts. Nature 239 455–456.

    Google Scholar 

  129. Davey MR. 1977. Bacterial uptake and nitrogen fixation. In: J Reinert and YPS Bajaj, eds, Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture. Springer-Verlag. pp 551–562.

    Google Scholar 

  130. Davey MR, Power JB. 1975. Polyethylene glycol-Induced uptake of micro-organisms into higher plant protoplasts: an ultrastructuraI study. Plant Sci.Lett. 5 269–274.

    Google Scholar 

  131. Burgoon AC, Bottino PJ. 1976. Uptake of the nitrogen fixing blue-green algae Gleocapsa into protoplasts of tobacco and maize. J. Hered. 67 223–226.

    Google Scholar 

  132. Meeks,JC, Malmberg RL, Wolk CP. 1978. Uptake of auxotrophic cells of a heterocyst-forming cyanobacterium by tobacco protoplasts, and the fate of their associations. Planta 139 55–60.

    Google Scholar 

  133. Anonymous. 1983. Improved nitrogen availability to plants 14; A new approach. AgricelI Report. August 1983, I I.

    Google Scholar 

  134. Bradley PM. 1979. Micromanipulation of cyanelles and a cyanobacterium into higher plant protoplasts. Physiol. Plant. 46 293–298.

    Google Scholar 

  135. Bradley PM. 1983. Protoplasts and spheroplasts of cyanobacteria. In: KL Giles, ed, Plant Protoplasts. Internat. Review Cytol. Suppl. 16. Academic Press, New York. pp. 5–19.

    Google Scholar 

  136. Giles KL. 1978. The uptake of organelles and micro-organisms by plant protoplasts: old ideas but new horizons. In: TA Thorpe, ed, Frontiers of Plant Tissue Culture. Univ. Calgary Press, Calgary, Alberta. pp. 67–73.

    Google Scholar 

  137. Giles KL, Whitehead HCM. 1975. The transfer of nitrogen fixing abi I ity to a eukaryotic eel I. Cytobios J_4 49–61.

    Google Scholar 

  138. Giles KL, Whitehead HCM. 1976. The uptake and continued metabolic activity of Azotobacter within fungal protoplasts. Science 193 I 125–1126.

    Google Scholar 

  139. Giles KL, Whitehead HCM. 1977. Reassociat ion of a modified mycorrhiza with the host plant roots ( Pinus radiata) and the transfer of acetylene reduction activity. Plant and Soil 48 143–152.

    Google Scholar 

  140. Giles KL, Whitehead HCM. 1977. The localisation of introduced Azotobacter cells within the mycelium of a modified mycorrhiza (Rhizopogon) capable of nitrogen fixation. Plant Sci. Lett. J_0 367–372.

    Google Scholar 

  141. Kao KN. 1977. Chromosomal behaviour in somatic hybrids of soybean- Nicotiana glauca. Molec. gen. Genet. 150 225–230.

    Google Scholar 

  142. Wetter LR, Kao KN. 1980 Chromosome and isoenzyme studies on cells derived from protoplast fusion of Nicotiana glauca with Glycine max- Nicotiana g_l_auca cell hybrids. Theor.Appl. Genet. 57 273–277.

    Google Scholar 

  143. Chien YC, Kao KN, Wetter LR. 1982. Chromosomal and isozyme studies of Nicotiana tabacum-Glycine max hybrid cell lines. Theor. Appl. Genet. 62 301–304.

    Google Scholar 

  144. Dud its D, Fejer 0, Hadlaczky Gy, Koncz Cs, La’za’r GB, Horvath G. 1980 Intergeneric gene transfer mediated by plant protoplast fusion. Molec. gen. Genet. _T79 283–288.

    Google Scholar 

  145. Swaminathan MS. 1982. Biotechnology research and third world agriculture Science 2I_8 967–972.

    Google Scholar 

  146. Shanmugam KT, Hennecke H. 1980 Microbial genetics and nitrogen fixation. In: NS Subba Rao, ed, Recent Advances in Biological Nitrogen Fixation. Oxford and IBH Publishing Co, New Delhi, Bombay, Calcutta, pp. 227–256.

    Google Scholar 

  147. Ausubel FM. 1980 Application of recombinant DNA technology to the study of nitrogen fixation. In: ibid. pp. 257–280.

    Google Scholar 

  148. Beynon J, Cannon M, Buchanan-WoI Iaston V, Cannon F. 1983. The nif promoters of Klebsiella pneumoniae have a characteristic primary structure. CelI 34 665–671.

    CAS  Google Scholar 

  149. Lamb JW, Hombrecher G, Johnston AWB. 1982. Plasmid-determined nodulation and nitrogen-fixing abilities in Rh1zobium phaseoli. Molec. gen. Genet. 186 449–452.

    Google Scholar 

  150. Brewin NJ, Wood EA, Johnston AWB, Dibb NJ, Hombrecher G. 1982. Recombinant nodulation plasmids in Rhizobium Ieguminosarum. J. Gen. Microbiol. _I28 1817–1828.

    Google Scholar 

  151. Bevan MW, Flavell RB, Chilton M-D. 1983. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304 184–187.

    CAS  Google Scholar 

  152. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC. 1983. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA. 80 4803–4807.

    Google Scholar 

  153. Herrera-EstreI I a L, Depicker A, Van Montagu M, Schell J. 1983. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303 209–213.

    Google Scholar 

  154. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA. 1983. A binary plant vector strategy based on the separation of vir-1 and T-region of the Agrobacterium tumefaciens Ti- plasmid. Nature 303 179–180.

    CAS  Google Scholar 

  155. de Framond AJ, Barton KA, Chilton M-D. 1983. Mini-Ti: A new vector strategy for plant genetic engineering. Biotechnology May 1983 262–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Davey, M.R., O’hara, G.W. (1984). In Vitro Systems for Studying Nitrogen Fixation. In: Collins, G.B., Petolino, J.G. (eds) Applications of Genetic Engineering to Crop Improvement. Advances in Agricultural Biotechnology, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6207-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6207-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6209-5

  • Online ISBN: 978-94-009-6207-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics