Skip to main content

Possible Role of Fruit Cell Wall Oxidative Activity in Ethylene Evolution

  • Chapter
Ethylene

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 9))

  • 147 Accesses

Abstract

The burst in ethylene evolution accompanying the respiratory upsurge in climacteric fruit has been extensively shown to accelerate the ripening process (3). The newly acquired knowledge of ethylene biosynthesis, particularly the finding that l-amino cyclopropane-l-carboxylic acid (ACC) is the penultimate ethylene precursor (1) has been used to an advantage to further demonstrate the dependency of ripening on ethylene synthesis and action. Accordingly, depressed production of ACC, and subsequently, of ethylene evolution were also strongly inhibitory to the ripening process (23,29). Clearly, ethylene biosynthesis and action in climacteric fruit have a major regulatory role in ripening.

New Jersey Agricultural Experiment Station, Publication No. D-12140-11-84 supported by State funds and by U.S. Hatch Act.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams DO, Yang S F. 1979. Ethylene biosynthesis: identification of 1-amino-cyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad SC: USA 76, 170–174.

    Article  CAS  Google Scholar 

  2. Barnett N M. 1974. Release of peroxidase from soybean hypocotyl cells by Sclerotium rolfsii culture filtrates. Can J Bot 52, 265–271.

    Article  CAS  Google Scholar 

  3. Burg S P, Burg E A. 1965. Ethylene action and the ripening of fruit. Science 148, 1190–1196.

    Article  PubMed  CAS  Google Scholar 

  4. Burg S P, Clogett C O. 1967. Conversion of methionine to ethylene in vegetative tissue and fruits. Biochem Biophys Res Commun 27, 125–130.

    Article  PubMed  CAS  Google Scholar 

  5. Chaluz E, Mattoo A K, Solomos T, Anderson J D. 1984. Enhancement of cellulysin-induced ethylene production by tobacco leaf discs. Plant Physiol 74, 99–103.

    Article  Google Scholar 

  6. Elstner E F, Konz J R. 1974. Light dependent ethylene production by isolated chloroplasts. FEBS-Lett 45, 18–21.

    Article  PubMed  CAS  Google Scholar 

  7. Esquerre Tugaye M T, Mazau D, Toppan A. 1983. Hydroxyproline-rich glycoproteins i cell wall of diseased plants as a defense mechanism. In: Post-harvest Physiology and Crop Preservation. M Lieberman, ed, Plenum Press, New York, London, pp 287–298.

    Google Scholar 

  8. Forney C F, Arteca R N, Walner S J. 1982. Effect of amino and sulfhydryl reactive reagents on respiration an ethylene production in tomato and apple fruit discs. Physiol Plant 54, 329–332

    Article  CAS  Google Scholar 

  9. Frenkel C, Dyck R. 1973. Auxin inhibition of ripening in Bartlett pears. Plant Physiol 51, 6–9.

    Article  PubMed  CAS  Google Scholar 

  10. Frenkel C, Haard N F. 1973. Initiation of ripening in Bartlett pear with an antiauxin alpha (p-chlorophenoxy) isobutyric acid. Plant Physiol 52, 380–384.

    Article  PubMed  CAS  Google Scholar 

  11. Goldschmidt E E, Monselise S P. 1966. Citrus petal-bioassay based on the indoly1–3-acetic effect on flower opening. Nature 212, 1064–1065.

    Article  CAS  Google Scholar 

  12. Hoffman N E, Yang S F, Ichihara A, Sakamara S. 1982. Stereo specific conversion of 1-amino-cyclopropane-1-carboxylic acid to ethylene by plant tissues. Plant Physiol 70, 195–199.

    Article  PubMed  CAS  Google Scholar 

  13. KuH S, Yang S F, Pratt H R. 1969. Ethylene formation from alpha-kato-gamma-methyl butyrate by tomato fruit extracts. Phytochemistry 8, 567–573.

    Article  Google Scholar 

  14. Lee T T. 1977. Role of phenolic inhibitors in peroxidase-mediated degradation of indole-3-acetic acid. Plant Physiol 59, 372–375.

    Article  PubMed  CAS  Google Scholar 

  15. Lee T T, Chapman R A. 1977. Inhibition of enzymic oxidation of indole-3-acetic acid by metabolites of the insecticide carbofuran. Phytochem 16, 35–39.

    Article  CAS  Google Scholar 

  16. Legge R L, Thompson J E, Baker J E. 1982. Free radical-mediated formation of ethylene from 1-amino-cyclopropane-1-carboxylic acid: a spin trap study. Plant Cell Physiol 23, 171–177.

    CAS  Google Scholar 

  17. Mapson L W, Wardale D A. 1971. Enzymes involved in the synthesis of ethylene from methionine, or its derivatives in tomatoes. Phytochemistry 10, 29–39.

    Article  CAS  Google Scholar 

  18. Mapson L W, Wardale D A. 1972. Role of indole-3-acetic acid in the formation of ethylene from 4-methylmercapto-2-oxo butryic acid by peroxidase. Phytochemistry 11, 1371–1387.

    Article  CAS  Google Scholar 

  19. Mattoo A K, Achilea O, Fuchs Y, Chalaz E. 1982. Membrane association and some characteristics of the ethylene forming enzyme from ethiolated pea seedlings. Biochem Biophys Res Commun 105, 271–278.

    Article  PubMed  CAS  Google Scholar 

  20. Mayak S, Legge R L, Thomspon J. E. 1981. Ethylene formation from 1-amino-cyclopropane-1-carboxylie acid by microsomal membranes from senescing carnation flowers. Planta 153, 49–55.

    Article  CAS  Google Scholar 

  21. McRae D H, Bonner J. 1953. Chemical structure and antiauxin activity. Physiol Plant 6, 485–510.

    Article  CAS  Google Scholar 

  22. McRae D G, Baker J E, Thompson J E. 1982. Evidence for the involvement of the superoxide radical in the conversion of 1-amino-cyclopropane-1-carboxylic acid to ethylene by pea microsomal membranes. Plant Cell Physiol 23, 375–383.

    CAS  Google Scholar 

  23. Ness J P, Romani R J. 1980. Effect of amino ethoxy vinyl glycine and counter-effect of ethylene on ripening of Bartlett pear fruit. Plant Physiol 65, 372–376.

    Article  PubMed  CAS  Google Scholar 

  24. Rohwer F, Mader M. 1981. The role of peroxidase in ethylene formation from 1-aminocyclopropane-1-carboxylie acid. Z Pflanzenphysiol Bd 194, 363–372.

    Google Scholar 

  25. Satoh S, Esashi Y. 1980. Alpha-aminobutyric acid: A probable competitive inhibitor of conversion of 1-aminocycloporpane-1-carboxylic acid to ethylene. Plant Cell Physiol 21, 939–949.

    CAS  Google Scholar 

  26. Strand L L, Mussell H. 1975. Solubization of peroxidase activity from cotton cell walls by endopolygalacturonases. Phytopothal 65, 830–831.

    Article  CAS  Google Scholar 

  27. Vioque A, Albi M A, Vioque B. 1981. Role of IAA-oxidase in the formation of ethylene form 1-aminocyclopropane-l-carboxylic acid. Phytochem 7, 1473–1475.

    Article  Google Scholar 

  28. Waldrum J D, Davis E. 1981. Subcellular localization of IAA oxidase in peas. Plant Physiol 68, 1303–1307.

    Article  PubMed  CAS  Google Scholar 

  29. Wang C Y, Mellenthin W M. 1977. Effect of amino ethoxy analogue of rhizobitoxine on ripening of pears. Plant Physiol 59, 548–549.

    Article  Google Scholar 

  30. Yamazaki I, Yokota K-N, Nakajima R. 1977. Reactions of free radicals with molecular oxygen. In: Biochemical and medical aspects of active oxygen. O Hayaishi, K Asada, eds, Univ Tokyo Press, Tokyo, pp 91–100.

    Google Scholar 

  31. Yang S F, Adams D O, Lizada C, Yu Y B, Bradford K J, Cameron A C, Hoffman N E. 1980. Mechanisms and regulation of ethylene biosynthesis. In: F Skoog, ed, Proc 10th International Conference on Plant Growth Substances Springer-Verlag, Berlin, pp 219–229.

    Google Scholar 

  32. YuY B, Adams D O, Yang S F. 1979. Regulation of auxin-induced ethylene production in mung bean hypocotyls: Role of 1-amino-cyclopropane-1-carboxylic acid. Plant Physiol 63, 589–590.

    Article  Google Scholar 

  33. YuY B, Adams D O, Yang S F. 1980. Inhibition of ethylene production by 2, 4-Dinitrophenol and high temperature. Plant Physiol 66, 286–290.

    Article  Google Scholar 

  34. YuY B, Yang S F. 1979. Auxin-induced ethylene production and its inhibition by amino ethoxy vinyl glycine and cobalt ions. Plant Physiol 64, 1074–1077.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff/Dr. W. Junk Publishers, The Hague

About this chapter

Cite this chapter

Frenkel, C., Mukai, M.K. (1984). Possible Role of Fruit Cell Wall Oxidative Activity in Ethylene Evolution. In: Fuchs, Y., Chalutz, E. (eds) Ethylene. Advances in Agricultural Biotechnology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6178-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6178-4_43

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6180-7

  • Online ISBN: 978-94-009-6178-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics