Skip to main content

Is ethylene the Natural Regulator of Abscission?

  • Chapter
Ethylene

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 9))

Abstract

Ethylene and abscission have been linked in the literature for many decades, but only recently has ethylene’s role been supported by critical evidence. Thus it seems almost paradoxical to consider whether ethylene is the regulator of abscission. The question is made appropriate by attention to the involvement of ethylene in a natural abscission and to the mechanism(s) by which ethylene initiates abscission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles FB. 1973. Ethylene in plant biology. Academic Press, NY

    Google Scholar 

  2. Abeles FB. 1968. Role of RNA and protein synthesis in abscission. Plant Physiol 43: 1557–1586 (and references therein).

    Article  Google Scholar 

  3. Abe 1es FB, Leather GR. 1971. Abscission: Control of cellulase secretion by ethylene. Planta 97: 87–91.

    Article  CAS  Google Scholar 

  4. Addicott FT. 1982. Abscission. University of California Press, Berkeley.

    Google Scholar 

  5. Addicott FT. 1983. Abscisic acid in abscission. In Addicott, FT ed, Abscisic Acid. Praeger Publishers, New York, pp 269–300.

    Google Scholar 

  6. Aharoni N, Lieberman M and Sisler L. 1979. Patterns of ethylene production in senescing leaves. Plant Physiol 65: 796–800 (and references therein).

    Article  Google Scholar 

  7. Apelbaum A, Wang SY, Burgoon AC, Baker JE, Lieberman M. 1981. Inhibition of the conversion of 1-amino-cyclopropane-l-carboxyl ic acid to ethylene. Plant Physiol 67: 74–79.

    Article  PubMed  CAS  Google Scholar 

  8. Bangerty F. 1978. The effect of substituted amino-acid on ethylene biosynthesis, respiration, ripening and preharvest drop of apple fruits. J Amer Soc Hortic Sci 103: 401–4.

    Google Scholar 

  9. Beyer EM Jr. and Morgan PW. 1971. Abscission: The role of ethylene modification of auxin transport. Plant Physiol 48: 208–212.

    Article  PubMed  CAS  Google Scholar 

  10. Beyer EM Jr. 1973. Abscission: Support for a role of ethylene modification of auxin transport. Plant Physiol 52:1–5.

    Article  PubMed  CAS  Google Scholar 

  11. Beyer EM Jr. 1975. Abscission The initial effect of ethylene is in the leaf blade. Plant Physiol. 55: 322–327.

    Article  PubMed  CAS  Google Scholar 

  12. Beyer EM Jr. 1976. A potent inhibitor of ethylene action in plants. Plant Physiol 64: 971–974.

    Article  Google Scholar 

  13. Beyer EM Jr. 1979. [14C] ethylene metabolism during leaf abscission in cotton. Plant Physiol 64: 971–974 (and references therein).

    Article  PubMed  CAS  Google Scholar 

  14. Blanspied GD. 1972. A study of ethylene in apple, red raspberry, and cherry. Plant Physiol 49: 627–630.

    Article  Google Scholar 

  15. Boiler T, Herner RC, Kende H. 1979. Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-l-carboxylic acid. Planta 145: 293–303.

    Article  Google Scholar 

  16. Burg SP, Burg EA. 1966. Fruit storage at subatmospheric pressures. Science 153: 314–315.

    Article  PubMed  CAS  Google Scholar 

  17. Burg SP, Burg EA. 1967. Molecular requirements for the biological activity of ethylene. Plant Physiol 42: 144–152.

    Article  PubMed  CAS  Google Scholar 

  18. Cooper WC, Horanic G. 1973. Induction of abscission at hypobaric pressures. Plant Physiol 51: 1002–1004.

    Article  PubMed  CAS  Google Scholar 

  19. Cracker LE, Abeles FB. 1969. Abscission: Role of abscisic acid. Plant Physiol 44: 1144–1149.

    Article  PubMed  CAS  Google Scholar 

  20. El-Beltagy AS, Hall MA. 1974. Effect of water stress upon endogenous ethylene levels in Vicia faba. New Phytol 73: 47–60.

    Article  CAS  Google Scholar 

  21. Gepstein S, Thimann KV. 1981. The role of ethylene in the senescence of oat leaves. Plant Physiol 68: 349–354.

    Article  PubMed  CAS  Google Scholar 

  22. Guinn G. 1982. Fruit age and changes in abscisic acid content, ethylene production, and abscission rate of cotton fruits. Plant Physiol 69: 345–352 (and references therein).

    Article  Google Scholar 

  23. Jackson MB, Osborne DJ. 1970. Ethylene, the natural regulator of leaf abscission. Nature 225: 1019–1022.

    Article  PubMed  CAS  Google Scholar 

  24. Kao CH, Yang SF. 1983. Role of ethylene in the senescence of detached rice leaves. Plant Physiol 73: 881–885.

    Article  PubMed  CAS  Google Scholar 

  25. Kushad MM, Poovaiah BW. 1984. Deferral of senescence and abscission by chemical inhibition of ethylene synthesis and action in bean explants. Plant Physiol. In Press.

    Google Scholar 

  26. Lipe JA, Morgan PW 1972. Ethylene: Response of fruit dehiscence to CO2 and reduced pressure. Plant Physiol 50: 765–768 (and references therein).

    Article  PubMed  CAS  Google Scholar 

  27. Lipe JA, Morgan PW. 1973. Ethylene, a regulator of young fruit abscission. Plant Physiol 51: 949–953 (and references therein).

    Article  PubMed  CAS  Google Scholar 

  28. Mattoo AK, Anderson JD, Chalutz E, Lieberman M. 1979. Influence of enol ether amino acids, inhibitors of ethylene biosynthesis, on aminoacyl transfer RNA synthetases and protein synthesis. Plant Physiol 64: 289–292.

    Article  PubMed  CAS  Google Scholar 

  29. Morgan PW. 1976. Ethylene physiology. In: Audus LJ, ed, Herbicides: Physiology, Biochemistry, Ecology. 2nd Edition, Volume 1: 255–280, Academic Press, London.

    Google Scholar 

  30. Morgan PW. 1984. Chemical manipulation of abscission and desiccation. In Hilton JL, ed., Agricultural Chemicals of the Future (BARC Symposium 8). Rowman and Allanheld, Publishers. In Press.

    Google Scholar 

  31. Morgan PW, Durham JI. 1972. Abscission: Potentiating action of auxin transport inhibitors. Plant Physiol 50: 313–318.

    Article  PubMed  CAS  Google Scholar 

  32. Morgan PW, Durham JI. 1980. Ethylene reduction and leaflet abscission in Melia azedarach L. Plant Physiol. 66: 88–92.

    Article  PubMed  CAS  Google Scholar 

  33. Osborne DJ, Sargent JA. 1976. The positional differentiation of abscission zones during the development of leaves of Sambucus nigra and the response of the cells to auxin and ethylene. Planta 132: 197–204.

    Article  CAS  Google Scholar 

  34. Pratt HK, Goeschl JD. 1969. Physiological roles of ethylene in plants. Ann Rev Plant Physiol 20: 541–584.

    Article  CAS  Google Scholar 

  35. Roberts JA, Osborne, DJ. 1981. Auxin and the control of ethylene production during the development and senescence of leaves and fruits. J Exp Bot 32: 875–887.

    Article  CAS  Google Scholar 

  36. Ronen M, Mayak S. 1981. Interrelationship between abscisic acid and ethylene in the control of senescence processes in carnation flowers. J Exp Bot 32: 759–765.

    Article  CAS  Google Scholar 

  37. Sagee O, Goren R, Riov J. 1980. Abscission of citrus leaf explants. Interrelationships of abscisic acid, ethylene, and hydrolytic enzymes. Plant Physiol 66: 750–753.

    Article  PubMed  CAS  Google Scholar 

  38. Suttle JC, Kende H. Ethylene and senescence in petals of Tradescantia. Plant Physiol 62: 267–271 (and references therein).

    Google Scholar 

  39. van Meetren V, de Proft M. 1982. Inhibition of flower bud abscission and ethylene evolution by light and silver thiosulphate in Li1ium. Physiol Plantarum 56: 236–240.

    Article  Google Scholar 

  40. Williams MW. 1980. Relation of fruit firmness and increase in vegetative growth and fruit set of apples with aminovinyl glycine. HortSci 15: 76–77.

    CAS  Google Scholar 

  41. Yu YB, Adams DO, Yang SF. 1979. 1-aminocyclopropane carboxylate synthase, a key enzyme in ethylene biosynthesis. Arch Biochem Biophys 198: 280–286.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff/Dr. W. Junk Publishers, The Hague

About this chapter

Cite this chapter

Morgan, P.W. (1984). Is ethylene the Natural Regulator of Abscission?. In: Fuchs, Y., Chalutz, E. (eds) Ethylene. Advances in Agricultural Biotechnology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6178-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6178-4_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6180-7

  • Online ISBN: 978-94-009-6178-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics