Skip to main content

Land Subsidence — B. A Regional Mathematical Model for Land Subsidence due to Pumping

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 82))

Abstract

A regional mathematical model for land subsidence and horizontal displacement resulting from pumping from an aquifer is developed on the basis of the works of Biot and Verruijt on consolidation. The regional mathematical model is obtained by integrating the equations that describe soil deformation in a three-dimensional space over the aquifer’s thickness, assuming conditions of plane excess total stress. These equations involve coupling between the equations of equilibrium of the porous medium and those of mass conservation. The resulting model yields both the aquifer compaction and the horizontal displacements, as functions of space coordinates and of time, for confined, leaky and phreatic aquifers.

An analytical solution is presented for the special case of a well pumping from an infinite homogeneous isotropic aquifer. The solution provides estimates of drawdown (of averaged piezometric head), vertical land subsidence and horizontal displacement as functions of distance from the well and time. The results indicate that approximately half the volume strain is produced by vertical subsidence, while the other half is produced by the horizontal displacement. Hence, vertical subsidence is overestimated by noncoupled models.

We also study the case for a phreatic aquifer where the total stress changes due to water table fluctuations and averaged land subsidence equations for a single-fluid geothermal reservoir.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bear, J. Hydraulics of Groundwater. McGraw Hill, New York, 1979.

    Google Scholar 

  2. Jacob, C. E. The Flow of Water in an Elastic Artesian Aquifer. EOS Trans. American Geophys. Union 21 (1940) 574 - 586.

    Google Scholar 

  3. Biot, M. A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 12 (1941) 155–164.

    Article  MATH  Google Scholar 

  4. Corapcioglu, M. Y., and W. Brutsaert. Viscoelastic Aquifer Model Applied to Subsidence Due to Pumping. Water Resour. Res. 13 (1977) 597–604.

    Article  Google Scholar 

  5. Terzaghi, K. Erdbaumechanik auf bodenphysikalischer Groundlage, Franz Deuticke, Vienna, 1925.

    Google Scholar 

  6. Verruijt, A. Elastic Storage of Aquifers, in Flow Through Porous Media, edited by R. J. M. DeWiest. Academic, New York (1969) 331–376.

    Google Scholar 

  7. Helm, D. A. One-dimensional Simulation of Aquifer System Compaction Near Pixley, California. 1. Constant Parameters. Water Resour. Res. 11 (1975) 465–578.

    Article  Google Scholar 

  8. Gambolati, G., and R. A. Freeze. Mathematical Simulation of the Subsidence of Venice. 1. Theory. Water Resour. Res. 9 (1973) 721–723.

    Article  Google Scholar 

  9. Narasimhan, T. N., and P. A. Witherspoon. Numerical Model for Land Subsidence in Shallow Groundwater Systems. Proc. Second Int. Symp. on Land Subsidence. Anaheim, Calif. Int. Assoc. of Hydrological Sciences Pub. No. 121 (1977) 133–143.

    Google Scholar 

  10. Ghaboussi, J., and E. L. Wilson. Flow of Compressible Fluid in Porous Elastic Media. Int. J. Numer. Meth. Eng. 5 (1973) 419–422.

    Article  MATH  Google Scholar 

  11. Schrefler, B. A., R. W. Lewis, and V. A. Norris. A Case Study of the Surface Subsidence of the Polesine Area. Int. J. Num. Anal. Meth. Geomech. 1 (1977) 377–386.

    Article  Google Scholar 

  12. Lewis, R. W., and B. Schrefler. A Fully Coupled Consolidation Model of the Subsidence of Venice. Water Resour. Res. 14 (1978) 223–230.

    Article  Google Scholar 

  13. Safai, N. M., and G. F. Pinder. Vertical and Horizontal Land Deformation in a Desaturating Porous Medium. Adv. Water Resour. 2 (1979) 19–25.

    Article  Google Scholar 

  14. Bear, J., and M. Y. Corapcioglu. Mathematical Model for Regional Land Subsidence Due to Pumping. 1. Integrated Aquifer Subsidence Equations Based on Vertical Displacement Only. Water Resour. Res. 17 (1981) 937–946.

    Article  Google Scholar 

  15. Bear, J., and M. Y. Corapcioglu. Mathematical Model for Regional Land Subsidence due to Pumping. 2. Integrated Aquifer Subsidence Equations for Vertical and Horizontal Displacements. Water Resour. Res. 17 (1981) 947–958.

    Article  Google Scholar 

  16. Corapcioglu, M. Y., and Bear, J. A. A Mathematical Model for Regional Land Subsidence Due to Pumping. 3. Integrated Equations for a Phreatic Aquifer. Water Resour. Res. 19 (1983) 895–908.

    Article  Google Scholar 

  17. Bear, J., and G. Pinder. Porous Medium Deformation in Multiphase Flow. J. Eng. Mech. Div., American Society of Civil Engineers 104 (1978) 881–894.

    Google Scholar 

  18. Bear, J. Dynamics of Fluids in Porous Media. American Elsevier. New York (1972).

    MATH  Google Scholar 

  19. Hubbert, M. K. The Theory of Groundwater Motion. J. Geol. 48 (1940) 785–944.

    Article  Google Scholar 

  20. Terzaghi, K. Theoretical Soil Mechanics. John Wiley, New York (1943) 290.

    Book  Google Scholar 

  21. Cooper, H. H. The Equation of Groundwater Flow in Fixed and Deforming Coordinates. J. Geophys. Res. 71 (1966) 4785–4790.

    Google Scholar 

  22. DeWiest, R. J. M. On the Storage Coefficient and the Equations of Groundwater Flow. J. Geophys. Res. 71 (1966) 1117–1122.

    Google Scholar 

  23. Gambolati, G. Equation for One-dimensional Vertical Flow of Groundwater. 1. Rigorous Theory. Water Resour. Res. 9 (1973) 1022–1028.

    Article  Google Scholar 

  24. Gambolati, G. Reply. Water Resour. Res. 10 (1974) 1262.

    Article  Google Scholar 

  25. Rendulic, L. Porenziffer und Porenwasserdruck in Tonen. Der Bauingenieur 17 (1936) 559–564.

    Google Scholar 

  26. Heinrich, G., and K. Desoyer. Theorie of Driedimensionaler Setzungsvorgaenge in Tonschichten. Ing.-Arch. 30 (1961) 225.

    Article  MathSciNet  MATH  Google Scholar 

  27. Cryer, C. W. A Comparison of the Three-dimensional Consolidation Theories of Biot and Terzaghi. Quart. J. Mech. Appl. Math. 16 (1963) 401–412.

    Article  MATH  Google Scholar 

  28. McNabb, A. A Mathematical Treatment of One-dimensional Soil Consolidation. Quart. Appl. Math. 17 (1960) 337–347.

    MathSciNet  MATH  Google Scholar 

  29. Taylor, D. W., and W. Merchant. A Theory of Clay Consolidation Accounting for Secondary Compression. J. Math. Phys. 19 (1940) 167–185.

    Google Scholar 

  30. Brutsaert, W. Elastic Consolidation and Flow of Two Immiscible Fluids in a Porous Medium. Unpublished Manuscript.

    Google Scholar 

  31. Bear, J. On the Aquifer’s Integrated Balance Equations. Adv. Water Resour. 1 (1977) 15–23.

    Article  Google Scholar 

  32. Bear, J. On the Aquifer’s Integrated Balance Equation, Technical Comment. Adv. Water Resour. 3 (1980) 141–142.

    Article  Google Scholar 

  33. Safai, N. M., and Pinder, G. F. Vertical and Horizontal Land Deformation due to Fluid Withdrawal. Int. J. Numer. Anal. Meth. Geomech. 4 (1980) 131–142.

    Article  Google Scholar 

  34. Narasimhan, T. N., and P. A, Witherspoon. Numerical Model for Saturated-Unsaturated Flow in Deformable Porous Media. 1. Theory. Water Resour. Res. 13 (1977) 657–664.

    Article  Google Scholar 

  35. Narasimhan, T. N., and P. A. Witherspoon. Numerical Model for Saturated-Unsaturated Flow in Deformable Porous Media. 3. Applications. Water Resour. Res. 14 (1978) 1017–1034.

    Article  Google Scholar 

  36. Bear, J., and M. Y. Corapcioglu. A Mathematical Model for Consolidation in a Thermoelastic Aquifer Due to Hot Water Injection or Pumping. Water Resour. Res. 17 (1981) 723–736.

    Article  Google Scholar 

  37. Derski, W., and S. J. Kowalski. Equations of Linear Thermo-Consolidation. Arch. Mech. 31 (1979) 303–316.

    MATH  Google Scholar 

  38. Pecker, C., and H. Deresiewicz. Thermal Effects on Wave Propagation in Liquid-Filled Porous Media. Acta Mechanica 16 (1973) 45–64.

    Article  Google Scholar 

  39. Schiffman, R. L. A Thermoelastic Theory of Consolidation, in Environmental and Geophysical Heat Transfer, American Society of Mechanical Engineers (1971) 78–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Corapcioglu, M.Y., Bear, J. (1984). Land Subsidence — B. A Regional Mathematical Model for Land Subsidence due to Pumping. In: Bear, J., Corapcioglu, M.Y. (eds) Fundamentals of Transport Phenomena in Porous Media. NATO ASI Series, vol 82. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6175-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6175-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6177-7

  • Online ISBN: 978-94-009-6175-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics