Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 82))

Abstract

The physics of infiltration based on one and two phase-flow approaches are discussed. Quasi-analytical and numerical solutions of infiltration equations are reviewed and illustrated by several examples. An emphasis is put on field infiltration studies including statistical and geostatistical data analysis, stochastic modeling through the scaling theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vachaud G. and J.L. Thony. Hysteresis during infiltration and redistribution in a soil column at different initial water contents. Water Resour. Res. 7 (1971) 111–127.

    Article  Google Scholar 

  2. Everett D.H. and W.I. Whitton. A general approach to hysteresis: IV. Trans. Faraday Soc. 51 (1955) 1551–1557.

    Article  Google Scholar 

  3. Poulovassilis A. Hysteresis in pore water and application of the concept of independent domains. Soil Sci. 93 (1962) 405–412.

    Article  Google Scholar 

  4. Topp G.C. Soil-water hysteresis: the domain theory extended to pore interaction conditions. Soil Sci. Soc. Amer. Proc. 35 (1971) 219–225.

    Article  Google Scholar 

  5. Mualem Y. and G. Dagan. Hysteresis in unsaturated porous media: a critical review and a new simplified approach. Technion (Israel Inst. Technol.) Second annual report, Part I V (1972).

    Google Scholar 

  6. Mualem Y. A conceptual model of hysteresis. Water Resour. Res. 10 (1974) 514–520.

    Article  Google Scholar 

  7. Parlange J.Y. Capillary hysteresis and relationship between drying and wetting curves. Water Resour. Res. 12 (1976) 224–228.

    Article  Google Scholar 

  8. Sedgley R.H. Pressure head relationships in a porous media. Ph.D. Thesis, University of Illinois (1967).

    Google Scholar 

  9. Smiles D.E., G. Vauchaud and M. Vauclin. A test of the uniqueness of the soil moisture characteristic during transient, non hysteresis flow of water in a rigid soil. Soil Sci. Soc. Amer. Proc. 35 (1971) 534–539.

    Article  Google Scholar 

  10. Gupta S.C. and W.E. Larson. Estimating soil water retention characteristics from particle size distribution, organic matter percent and bulk density. Water Resour. Res. 15 (1979) 1633–1635.

    Article  Google Scholar 

  11. Arya L.M. and J.F. Paris. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45 (1981) 1023–1030.

    Article  Google Scholar 

  12. Haverkamp R. and J.Y. Parlange. Predicting water retention curves from particle size distributions. 1982 submitted to Soil Sci.

    Google Scholar 

  13. Buckingham E. Studies on the movement of soil moisture. U.S. Dept. Agric. Bureau of Soils, Bulletin n° 8 (1907).

    Google Scholar 

  14. Richards L.A. Capillary conduction of liquids through porous medium. Physics 1 (1931) 318–333.

    Article  MATH  Google Scholar 

  15. Marshall T.J. A relation between permeability and size distribution of pores. J. Soil Sci. 9 (1958) 1–8.

    Article  Google Scholar 

  16. Milligton R.J. and J.P. Quirk. Permeability of porous media. Nature 183 (1959) 387–388.

    Article  Google Scholar 

  17. Kunze R.J., G. Uehara and K. Graham. Factors important in the calculation of hydraulic conductivity. Soil Sci. Soc. Am. Proc. 26 (1968) 760–765.

    Article  Google Scholar 

  18. Jackson R.D. On the calculation of hydraulic conductivity. Soil Sci. Soc. Am. Proc. 36 (1972) 380–383.

    Article  Google Scholar 

  19. Mualem Y. A new model for predicting the hydraulic conduc-tivity of unsaturated porous media. Water Resour. Res. 12 (1976) 513–522.

    Article  Google Scholar 

  20. Mualem Y. Hydraulic conductivity of unsaturated porous media: generalized macroscopic approach. Water Resour. Res. 14 (1978) 325–334.

    Article  Google Scholar 

  21. Millerj E.E. and D.E. Elrick. Dynamic determination of capillary conductivity extended for non-negligible membrane impedance. Soil Sci. Soc. Am. Proc. 22 (1958) 483–486.

    Article  Google Scholar 

  22. Rijtema P.E. Calculation of capillary conductivity from pressure plate out flow data with non-negligible membrane impedance. Neth. J. Agr. Sci. 7 (1959) 209–215.

    Google Scholar 

  23. Youngs E.G. An infiltration method of measuring the hydraulic conductivity of unsaturated porous materials. Soil Sci. 109 (1964) 307–311.

    Article  Google Scholar 

  24. Bruce R.R. and A. Klute. The measurement of soil water diffusivity. Soil Sci. Soc. Am. Proc. 20 (1956) 458–462.

    Article  Google Scholar 

  25. Watson K.K. An instantaneous profile method for determining the hydraulic conductivity of unsaturated porous materials. Water Resour. Res. 2 (1966) 709–715.

    Article  Google Scholar 

  26. Reichardt K., P.L. Libardi and D.R. Nielsen. Unsaturated hydraulic conductivity determination by a scaling technique. Soil Sci. 120 (1975) 165–168.

    Article  Google Scholar 

  27. Bresler E., D. Russo and R.D. Miller. Rapid estimate of unsaturated hydraulic conductivity function. Soil Sci. Soc. Am. J. 42 (1978) 170–172.

    Article  Google Scholar 

  28. Rose C.W., W.R. Stern and J.E. Drummond. Determination of hydraulic conductivity as a function of depth and water content for soil in-situ. Aust. J. Sol Res. 3 (1965) 1–9.

    Article  Google Scholar 

  29. Hillel D., V.D. Krentos and Y. Stylianou. Procedure and test of an internal drainage method for measuring soil hydraulic characteristics in-situ. Soil Sci. 114 (1972) 395– 400.

    Google Scholar 

  30. Libardi P.L., K. Reichardt, D.R. Nielsen and J.W. Biggar. Simple field methods for estimating soil hydraulic conductivity. Soil Sci. Soc. Am. J. 44 (1980) 3–7.

    Article  Google Scholar 

  31. Hamon G. Mise en oeuvre et critique de méthodes de caractérisation hydrodynamique de la zone non saturée du sol. Applications aux sols de culture du Sénégal. Thèse Docteur- Ingénieur, Université Scientifique et Médicale de Grenoble (1980).

    Google Scholar 

  32. Klute A. A numerical method for solving the flow equation for water in unsaturated materials. Soil Sci. 73 (1952) 105–116.

    Article  Google Scholar 

  33. Philip J.R. The theory of infiltration. Soil Sci. 83 (1957) 345–357.

    Article  Google Scholar 

  34. Vauclin M., R. Haverkamp and G. Vachaud. Résolution numérique d’une équation de diffusion non linéaire. Appli cation à l’infiltration de l’eau dans les sols non saturés. Presses Universitaires de Grenoble (1979).

    Google Scholar 

  35. Parlange J.Y. Theory of water-movement in soils: 2. One-dimensional infiltration. Soil Sci. 111 (1971) 170–174.

    Article  Google Scholar 

  36. Parlange J.Y. Theory of water-movement in soils: 8. One- dimensional infiltration with constant flux at the surface. Soil Sci. 114 (1972) 1–4.

    Article  Google Scholar 

  37. Haverkamp R., M. Vauclin, J. Tourna P.J. Wierenga and G. Vachaud. A comparison of numerical simulation models for one- dimensional infiltration. Soil Sci. Soc. Amer. J. 41 (1977) 285–294.

    Article  Google Scholar 

  38. Philip J.R. On solving the unsaturated flow equation: 1. The flux-concentration relation. Soil Sci. 116 (1973) 328–335.

    Article  Google Scholar 

  39. Philip J.R. and J.H. Knight. On solving the unsaturated flow equation: 3. New quasi-analytical technique. Soil Sci. 117 (1974) 1–13.

    Article  Google Scholar 

  40. White I. Measured and approximate flux-concentration relations for adsorption of water by soil. Soil Sci. Soc. Amer. J. 43 (1979) 1074–1080.

    Article  Google Scholar 

  41. Perroux K.M., D. E. Smiles and I. White. Water movement in uniform soils during constant flux infiltration. Soil Sci. Soc. Am. J. 45 (1981) 237–240.

    Article  Google Scholar 

  42. Haverkamp R. and M. Vauclin. A note on estimating finite difference interblock hydraulic conductivity values for transient unsaturated flow problems. Water Resour. Res. 15 (1979) 181–187.

    Article  Google Scholar 

  43. Haverkamp R. and M. Vauclin. A comparative study of three forms of the Richards’ equation used for predicting one-dimensional infiltration in unsaturated soil. Soil. Sci. Soc. Amer. J. 45 (1981) 13–20.

    Article  Google Scholar 

  44. Wierenga P. J., and C.T. de Wit. Simulation of heat transfer in soils. Soil Sci. Soc. Am. Proc. 34 (1970) 845–848.

    Article  Google Scholar 

  45. Bhuiyan S.I., E.A. Hiler, C.H.M. Van Bavel and A.R. Aston. Dynamic simulation of vertical infiltration into unsaturated soils. Water Resour. Res. 7 (1971) 1597–1606.

    Article  Google Scholar 

  46. Van der Ploeg, R.R. Simulation of moisture transfer in soils: one-dimensional infiltration. Soil Sci. 118 (1974) 349–357.

    Article  Google Scholar 

  47. Dane J.H. and P. Wierenga. Effect of hysteresis on the prediction of infiltration, redistribution and drainage of water in a layered soil. J. Hydrol. 7 (1975) 229–242.

    Article  Google Scholar 

  48. Rubin J. Numerical analysis of ponded rainfall infiltration. In Proc. Wageningen Symposium IASH (1966) 440–451.

    Google Scholar 

  49. Raats P.A.C. and W.R. Gardner. Movement of water in the unsaturated zone near a watertable. In J. Van Schilfgaarde (Ed.) Drainage for agriculture: Agronomy 17 (1974) 311–405. Am. Soc. Agron. Madison, Wis.

    Google Scholar 

  50. Rubin J. Theoretical analysis, of two-dimensional transient flow of water in unsaturated and partly unsaturated soils. Soil Sci. Soc. Amer. Proc. 32 (1968) 607–615.

    Article  Google Scholar 

  51. Vauclin M., D. Khanji and G. Vachaud. Experimental and numerical study of a transient two-dimensional unsaturated- saturated water table recharge problem. Water Resour. Res. 15 (1979) 1089–1101.

    Article  Google Scholar 

  52. Warrick A.W. Time-dependent linearized infiltration. I. point sources. Soil Sci. Soc. Amer. Proc. 38 (1974) 383–387.

    Article  Google Scholar 

  53. Warrick A.W. Analytical solutions to the one-dimensional linearized moisutre flow equation for arbitrary input. Soil Sci. 120 (1975) 79–84.

    Article  Google Scholar 

  54. Warrick A.W. and D.O. Lomen. Time dependent linearized infiltration. III. Strip and disc sources. Soil Sci. Soc. Amer. J. 40 (1976) 639–643.

    Article  Google Scholar 

  55. Ababou R. Modélisation des transferts hydriques dans le sol en irrigation localisée. Thèse Docteur-Ingénieur, Université Scientifique et Médicale de Grenoble (1981).

    Google Scholar 

  56. Philip J.R. Hydrostatics and hydrodynamics in swelling soils. Water Resour. Res. 5 (1969) 1070–1077.

    Article  Google Scholar 

  57. Sposito G. Thermodynamics of swelling clay-water systems. Soil Sci, 114 (1972) 243–249.

    Article  Google Scholar 

  58. Sposito G. Volume changes in swelling clays. Soil Sci. 115 (1973) 315–320.

    Article  Google Scholar 

  59. Sposito G. Steady vertical flows in swelling soils. Water Resour. Res. 11 (1975) 461–464.

    Article  Google Scholar 

  60. Sposito G. A thermodynamic integral equation for the equilibrium moisture profile in swelling soil. Water Resour. Res. 11 (1975) 490–500.

    Google Scholar 

  61. Sposito G. On the differential equation for the equilibrium moisture profile in swelling soil. Soil Sci. Soc. Amer. Proc. 39 (1975) 1053–1056.

    Article  Google Scholar 

  62. Groenevelt P.H. and G.H. Bolt. Water retention in soil. Soil Sci. 113 (1972) 238–245.

    Article  Google Scholar 

  63. Groenevelt P.H, and J.Y. Parlange. Thermodynamic stability of swelling soils. Soil Sci. 118 (1974) 1–5.

    Article  Google Scholar 

  64. Smiles D.E. Infiltration into a swelling material. Soil Sci. 117 (1974) 140–147.

    Article  Google Scholar 

  65. Bridge B.J. and N. Collis-George. A dual source gamma-ray traversing mechanism suitable for the non-destructive simultaneous measurement of bulk density and water content in columns of swelling soils. Aust. J. Soil Res. 11 (1973) 83–92.

    Article  Google Scholar 

  66. Nofziger D.L. and D. Swartzendruber. Water content and bulk density during wetting of a Bentonite-silt column. Soil Sci. Soc. Am. J. 40 (1976) 345–348.

    Article  Google Scholar 

  67. Soane B.D. Dual energy gamma-ray transmission for coincident measurement of water content and dry bulk density of soil. Nature 214 (1967) 1273–1274.

    Article  Google Scholar 

  68. Stroosnijder L. and J.G. De Swart. Column scanning with simultaneous use of Am 241 and Cs 137 radiation. Soil Sci. 118 (1974) 61–69.

    Article  Google Scholar 

  69. Bouma J. and L.W. Dekker. A case study on infiltration into dry clay soil. I. Morphological observations. Geoderma 20 (1978) 27–40.

    Article  Google Scholar 

  70. Bouma J., L.W. Dekker and J.H.M. Wosten. A case study on infiltration into dry clay soil. II. Physical measurements. Geoderma 20 (1978) 41–51.

    Article  Google Scholar 

  71. Hoogmoed W.B. and J. Bouma. A simulation model for predicting infiltration into cracked clay soil. Soil Sci. Soc. Am. J. 44 (1980) 458–461.

    Article  Google Scholar 

  72. Peck A.J. Moisture profile development and air compression during water uptake by bounded porous bodies. 2. Horizontal columns. Soil Sci. 99 (1965) 327–334.

    Article  Google Scholar 

  73. Peck A.J. Moisture profile development and air compression during water uptake by bounded porous bodies. 3. Vertical columns. Soil Sci. 100 (1965) 44–51.

    Article  Google Scholar 

  74. Vachaud G., M. Vauclin D. Khanji and N. Wakil. Effects of air pressure on water flow in an unsaturated stratified vertical column of band. Water Resour. Res. 9 (1973) 160–173.

    Article  Google Scholar 

  75. Wilson L.G. and J.N. Luthin. Effect of air-flow ahead of the wetting front on infiltration. Soil Sci. 96 (1963) 136–143.

    Article  Google Scholar 

  76. Vachaud G., J.P. Gaudet and V. Kuraz. Air and water flow during ponded infiltration in a vertical bounded column of soil. J. of Hydrology 22 (1974) 89–108.

    Article  Google Scholar 

  77. Bianchi W.C. and E.E. Haskell Jr. Air in the vadose zone as it affects water movements beneath a recharge basin. Water Resour. Res. 2 (1966) 315–322.

    Article  Google Scholar 

  78. Dixon R.M. and D.R. Linden. Soil air pressure and water infiltration under border irrigation. Soil Sci. Soc. Amer. Proc. 36 (1972) 948–953.

    Article  Google Scholar 

  79. Phuc Le Van and H.J. Morel-Seytoux. Effect of soil air movement and compressibility on infiltration rates. Soil Sci. Soc. Amer. Proc. 36 (1972) 237–241.

    Article  Google Scholar 

  80. Brustkern R.L. and H.J. Morel-Seytoux. Analytical treatment of two-phase infiltration. J. of the Hydraulics Div., A.S.C.E. 96 (1970) 2535–2548.

    Google Scholar 

  81. Noblanc A. and H.J. Morel-Seytoux. A perturbation analysis of two-phase infiltration. J. of the Hydraulics Div., A.S. C.E. 98 (1972) 1527–1541.

    Google Scholar 

  82. Raats P.A.C. Unstable wetting fronts in uniform and nonuniform soils. Soil Sci. Soc. Amer. Proc. 37 (1973) 681–685.

    Article  Google Scholar 

  83. Hill D.E. and J.Y. Parlange. Wetting front instability in layered soils. Soil Sci. Soc. Amer. Proc. 36 (1972) 697–702.

    Article  Google Scholar 

  84. Philip J.R. Stability analysis of infiltration. Soil Sci. Soc. Amer. Proc. 39 (1975) 1042–1049.

    Article  Google Scholar 

  85. Hillel D. Soil and Water: Physical Principles and Processes. Academic Press, New York (1971).

    Google Scholar 

  86. Rubin J. Theory of rainfall uptake by soils initially drier than their field capacity and its application. Water Resour. Res. 2 (1966) 739–749.

    Article  Google Scholar 

  87. Kostiakov A.N. On the dynamics of the coefficient of water- percolation in soils and the necessity of studying it from a dynamic point of view for purposes of amelioration. Trans. Com. Int. Soc. Soil Sci. 6th Moscos (1932) Part A 17–21.

    Google Scholar 

  88. Smith R.E. The infiltration envelope: results from a theoretical infiltrometer. J. of Hydrology 17 (1972) 1–22.

    Article  Google Scholar 

  89. Horton R.E. An approach toward a physical interpretation of infiltration capacity. Soil Sci. Soc. Amer. Proc. 5 (1940) 399–417.

    Article  Google Scholar 

  90. Holtan H.N. Concept for infiltration estimates in watershed engineering. U.S. Dept. Agr. Res. Ser. Publ. (1961) 41–51.

    Google Scholar 

  91. Holtan H.N. and N.C. Lopez. USDAHL - 70 model of watershed hydrology. U.S. Dept. Agric. Tech. Bull. 1435 (1971).

    Google Scholar 

  92. Green W.H. and G.A. Ampt. Studies on soil physics. 1 - The flow of air and water through soils. J. Agric. Sci. 4 (1911) 1–24.

    Article  Google Scholar 

  93. Van Duin R.H.A. Tillage in relation to rainfall intensity and infiltration capacity of soils. Neth. J. Agr. Sci. 3 (1955) 182–186.

    Google Scholar 

  94. Bouwer H. Infiltration of water into non uniform soil. J. Irrig. Drain. Div. Amer. Soc. Civil Eng. 95. IR4 (1969) 451–456.

    Google Scholar 

  95. Childs E.C. and M. Bybordi. The vertical movement of water in a stratified porous material. 1 - Infiltration. Water Resour. Res. 5 (1969) 446–451.

    Article  Google Scholar 

  96. Hillel D. and W.R. Gardner. Transient infiltration into crust-topped profiles. Soil Sci. 109 (1970) 410–416.

    Google Scholar 

  97. Ahuja L.R. Applicability of the Green-Ampt approach to water infiltration through surface crust. Soil Sci. 118 (1974) 283–288.

    Article  Google Scholar 

  98. Mein R.G. and C.L. Larson. Modeling infiltration during a steady rain. Water Resour. Res. 9 (1973) 384–394.

    Article  Google Scholar 

  99. Swartzendruber D.S. Infiltration of constant-flux rainfall into soil as analyzed by the approach of Green and Ampt. Soil Sci. 117 (1974) 272–281

    Article  Google Scholar 

  100. James L.G. and C.L. Larson. Modeling infiltration and redistribution of soil water during intermittent application. Trans. Amer. Soc. Agr. Eng. 19 (1976) 482–488.

    Google Scholar 

  101. Chu S.T. Infiltration during an unsteady rain. Water Resour. Res. 14 (1978) 461–466.

    Article  Google Scholar 

  102. Freyberg D.L., J.W. Reeder J.B. Franzini and I. Remson. Application of the Green-Ampt model to infiltration under time-dependent surface water depths. Water Resour. Res. 16 (1980) 517–528.

    Article  Google Scholar 

  103. Dawdy D.R., R.W. Lichty and J.M. Bergmann. A rainfall-runoff simulation model for estimation of flood peaks for small drainage basins. U.S. Geol. Surv. Prof. Pap. 506-B (1972)

    Google Scholar 

  104. Brakensiek D.L. and C.A. Onstad. Parameter estimation of the Green and Ampt infiltration equation. Water Resour. Res. 13 (1977) 1007–1011.

    Google Scholar 

  105. Bouwer H. Unsaturated flow in ground-water hydraulics. J. Hydraul. Div. Amer. Soc. Civil Eng. 90 HY5 (1964) 121–127.

    Google Scholar 

  106. Mein R.G. and D.A. Farrell. Determination of wetting front suction in the Green-Ampt equation. Soil Sci. Soc. Amer. Proc. 38 (1974) 872–876.

    Article  Google Scholar 

  107. Morel-Seytoux H.J. and D. Khanji. Derivation of an equation of infiltration. Water Resour. Res. 10 (1974) 795–800.

    Article  Google Scholar 

  108. Neuman S.P. Wetting front pressure head in the infil-tration model of Green and Ampt. Water Resour. Res. 12 (1976) 564–566.

    Article  Google Scholar 

  109. Bouwer H. Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resour. Res. 2 (1966) 729–738.

    Article  Google Scholar 

  110. Brakensiek D.L. Estimating the effective capillary pressure in the Green and Ampt infiltration-equation. Water Resour. Res. 13 (1977) 680–682.

    Article  Google Scholar 

  111. Philip J.R. Adsorption and infiltration in two-and three-dimensional systems. In Water in the unsaturated zone ( R.E. Ritjema and H. Wassink, ed.) (1966) 503–525 IASH/UNESCO Symp. Wageningen.

    Google Scholar 

  112. Fleming D.M. and D.E. Smiles. Infiltration of water into soil off print from: Prediction of catchment hydrology. Australian Academy of Science (1975) 83–110.

    Google Scholar 

  113. Philip J.R. Theory of infiltration. Adv. Hydrosci. 5 (1969) 215–290.

    Google Scholar 

  114. Smiles D.E. and J.H. Knight. A note on the use of the Philip infiltration equation. Aust. J. Soil Res. (1976) 103–108.

    Google Scholar 

  115. Talsma T. In situ measurement of sorptivity. Aust. J. Soil Res. 7 (1969) 269–276.

    Article  Google Scholar 

  116. Swartzendruber D. and E.G. Youngs. A comparison of physically-based infiltration equations. Soil Sci. 117 (1974) 165–167.

    Article  Google Scholar 

  117. Yu Si Fok. A comparison of the Green-Ampt and Philip two-term infiltration equations. Trans. A.J.A.E. (1975) 1073–1075.

    Google Scholar 

  118. Nielsen D.R., J.W. Biggar and K.T. Erh. Spatial variability of field measured soil-water properties. Hilgardia 42 (1973) 215–259.

    Google Scholar 

  119. Carvallo H.O., D.K. Cassel J. Hammond and A. Bauer. Spatial variability of in-situ unsaturated hydraulic conductivity of Haddock Sandy Loam. Soil Sci. 121 (1976) 1–8.

    Article  Google Scholar 

  120. Warrick A.W., G.J. Mullen and D.R. Nielsen. Prediction of the soil-water flux based upon field-measured soil-water properties. Soil Sci. Soc. Amer. J. 41 (1977) 4–19.

    Google Scholar 

  121. Russo D. and E. Bresler. Soil hydraulic properties as stochastic processes. I. An analysis of field spatial variability. Soil Sci. Soc. Amer. J. 45 (1981) 682–687.

    Article  Google Scholar 

  122. Cameron D.R. Variability of soil retention curves and predicted hydraulic conductivities on a small plot. Soil Sci. 126 (1978) 364–371.

    Article  Google Scholar 

  123. Rogowski A.S. Watershed physics: soil variability criteria. Water Resour. Res. 8 (1972) 1015–1023.

    Article  Google Scholar 

  124. Sharma M.L., G.A. Gander and C.G. Hunt. Spatial variability of infiltration in a watershed. J. of Hydrol. 45 (1980) 101–122.

    Article  Google Scholar 

  125. Amerman C.R., D.I. Hillel and A.E. Pererson. A variable-intensity sprinkling infiltrometer. Soil Sci. Soc. Amer. Proc. 34 (1970) 830–832.

    Article  Google Scholar 

  126. Rawitz E., M. Margolin and D. Hillel. An improved variable intensity sprinkling infiltrometer. Soil Sci. Soc. Amer. Proc. 36 (1972) 533–535.

    Article  Google Scholar 

  127. Vachaud G., M. Vauclin and J. Colombani. Bilan hydrique dans le sud-tunisien. I. Caractérisation expérimentale des transferts dans la zone non saturée. J. of Hydrol. 49 (1981) 31–52.

    Article  Google Scholar 

  128. Tricker A.S. The infiltration cylinder: some comments on its use. J. of Hydrol. 36 (1978) 383–391.

    Article  Google Scholar 

  129. Imbernon J. Variabilité spatiale des caractéristiques hydrodynamiques dTun sol du Sénégal. Application au calcul d’un bilan sous culture. Thèse 3ème cycle, Université Scientifique et Médicale de Grenoble (1981).

    Google Scholar 

  130. Sisson J.B. and P.J. Wierenga. Spatial variability of steady-state infiltration rates as a stochastic process. Soil Sci. Soc. Amer. J. 45 (1981) 699–704.

    Article  Google Scholar 

  131. Russo D. and E. Bresler. Field determinations of soil hydraulic properties for statistical analyses. Soil Sci. Soc. Amer. J. 44 (1980) 697–702.

    Article  Google Scholar 

  132. Vauclin M., G. Vachaud and J. Imbernon. Spatial variability of some soil physical properties over one-hectare field plot. Communication at the AGU Chapman Conference Fort Collins (Colo.), July 1981.

    Google Scholar 

  133. Vieira S.R., D.R. Nielsen and J.W. Biggar. Spatial variability of field-measured infiltration rate. Soil Sci. Soc. Amer. J. 45 (1981) 1040–1048.

    Article  Google Scholar 

  134. Miller E.E. and R.D. Killer. Physical theory for capillary flow phenomena. J. Appl. Phys. 27 (1956) 324–332.

    Article  Google Scholar 

  135. Reichardt K., D.R. Nielsen and J.W. Biggar. Scaling of horizontal infiltration into homogeneous soils. Soil Sci. Soc. Amer. Proc. 36 (1972) 241–245.

    Article  Google Scholar 

  136. Warrick A.W., G.J. Mullen and D.R. Nielsen. Scaling field-measured soil hydraulic properties using similar-media concept. Water Resour. Res. 13 (1977) 355–362.

    Article  Google Scholar 

  137. Simmons C.S., D.R. Nielsen and J.W. Biggar. Scaling of field-measured soil-water properties. Hilgardia 47 (1979) 77–173.

    Google Scholar 

  138. Russo D. and E. Bresler. Scaling soil hydraulic properties of a heterogeneous field. Soil Sci. Soc. Amer. J. 44 (1980) 681–684.

    Article  Google Scholar 

  139. Mailer R.A. and M.L. Sharma. An analysis of areal infiltration considering spatial variability. J. of Hydrol. 52 (1981) 25–37.

    Article  Google Scholar 

  140. Warrick A.W. and A. Amoozegar-Fard. Infiltration and drainage calculations using spatially scaled hydraulic properties. Water Resour. Res. 15 (1979) 1116–1120.

    Article  Google Scholar 

  141. Peck A.J., R.J. Luxmoore and J. L. Stolzy. Effects of spatial variability of soil hydraulic properties in water budget modeling. Water Resour. Res. 13 (1977) 348–354.

    Article  Google Scholar 

  142. Sharma M.L. and R.J. Luxmoore. Soil spatial variability and its consequences on simulated water balance. Water Resour. Res. 15 (1979) 1567–1573.

    Article  Google Scholar 

  143. Luxmoore R.J. and M.L. Sharma. Runoff responses to soil heterogeneity: experimental and simulation comparisons for two contrasting watersheds. Water Resour. Res. 16 (1980) 675–684.

    Article  Google Scholar 

  144. Huff D.D., R.J. Luxmoore J.B. Mankin and C.L. Begovich. THEM: A terrestrial ecosystem hydrology model. Rep. ORNL/ NSF/EATC-27. Oak Ridge Nat. Lab. (1977).

    Google Scholar 

  145. Smith R.E. and R.H.B. Hebbert. A Monte-Carlo analysis of the hydrologic effects of spatial variability of infiltration. Water Resour. Res. 15 (1979) 419–429.

    Article  Google Scholar 

  146. Matheron G. The theory of regionalized variables and its applications. Ecole des Mines de Fontainebleau, France (1971) .

    Google Scholar 

  147. Journel A.G. Geostatistics for conditional simulations of ore bodies. Econ. Geol. 69 (1974) 673–687.

    Article  Google Scholar 

  148. Bakr A., L.W. Gelhar A.L. Gutjahr and J.R. MacMillan. Stochastic analysis of spatial variability in subsurface flows. 1. Comparison of one- and three-dimensional flows. Water Resour. Res. 14 (1978) 263–271.

    Article  Google Scholar 

  149. Gutjahr A.L., L.W. Gelhar, A.A. Bakr and J.R. MacMillan. Stochastic analysis of spatial variability in subsurface flows, 2. Evaluation and application. Water Resour. Res. 14 (1978) 953–959.

    Article  Google Scholar 

  150. Smith L. and R.A. Freeze. Stochastic analysis of steady state groundwater flow in a bounded domain. 1. One-dimensional simulations. Water Resour. Res. 15 (1979) 521–528.

    Article  Google Scholar 

  151. Delhomme J.F. Spatial variability and uncertainty in ground water flow parameters: A geostatistical approach. Water Resour. Res. 15 (1979) 269–280.

    Article  Google Scholar 

  152. Molz F.J., J.M. Davidson and E.W. Tollner. Unsaturated-zone water. Reviews of geophysics and space physics. 17th General Assembly international union of Geodesy and Geophysics. Canberra: 17 (1979) 1221–1239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Vauclin, M. (1984). Infiltration in Unsaturated Soils. In: Bear, J., Corapcioglu, M.Y. (eds) Fundamentals of Transport Phenomena in Porous Media. NATO ASI Series, vol 82. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6175-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6175-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6177-7

  • Online ISBN: 978-94-009-6175-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics