Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 82))

Abstract

The finite element method was first developed by structural engineers in the middle fifties as an alternative to classical mathematical techniques in dealing with the complex geometrical configurations encountered. Although the historical origins of the method are undoubtedly interesting, and can be found in most standard texts on the subject [1–7], it is not intended to review these in this chapter. A major step in the evolution of the technique was the realisation that the method was strongly related to variational principles. The applicability of the method could thus be readily extended to disciplines other than structural mechanics, and the technique could approximate any mathematical or physical problem whose solution could be expressed as a stationary value of a given functional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zienkiewicz, O.C. The Finite Element Method, 3rd Ed., McGraw-Hill, 1977.

    MATH  Google Scholar 

  2. Hinton, E. and D.R.J. Owen. An Introduction to Finite Element Computations. Pineridge Press, 1979.

    Google Scholar 

  3. Irons, B.M. and S. Ahmad. Techniques of Finite Elements. Ellis Horwood, Chichester, England, 1979.

    Google Scholar 

  4. Martin, H.C. and G.F. Carey. Introduction to Finite Element Analysis. McGraw-Hill, 1973.

    MATH  Google Scholar 

  5. Cheung, Y.K. and M.F. Yeo. A Practical Introduction to Finite Element Analysis. Pitman, London, 1979.

    MATH  Google Scholar 

  6. Desai, C.S. Elementary Finite Element Method. Prentice Hall, Englewood Cliffs, New Jersey, 1979.

    MATH  Google Scholar 

  7. Strang, W.G. and G.J. Fix. An Analysis of the Finite Element Method. Prentice Hall, Englewood Cliffs, New Jersey, 1973.

    MATH  Google Scholar 

  8. Lewis, R.W. and B.A. Schrefler. “A Fully Coupled Consolidation Model of the Subsidence of Venice”. Water Resources Research 14 [ 1978 ] 223–230.

    Google Scholar 

  9. Schrefler, B.A., R.W. Lewis and V.A. Norris. “A Case Study of the Surface Subsidence of the Polesine Area”. Int. J. Num. Anal. Meth. in Geomechanics 1 (1977) 377–386.

    Article  Google Scholar 

  10. Schrefler, B.A., R.W. Lewis and C. Majorana. “Subsidence above Volumetric and Waterdrive Gas Reservoirs”. Int. J. Num. Meth. in Fluids 1 (1981) 101–115.

    Article  Google Scholar 

  11. Comini, G. and R.W. Lewis. “A Numerical Solution of Two-Dimensional Problems Involving Heat and Mass Transfer”. Int. J. Heat Mass Transfer 19 (1976) 1387–1392.

    Article  MATH  Google Scholar 

  12. Lewis, R.W., M. Strada and G. Comini. “Drying Induced Stresses in Porous Bodies” Int. J. Num. Meth. Eng. 11 (1977) 1175–1184.

    Article  Google Scholar 

  13. Lewis, R.W., K. Morgan, H.R. Thomas and M. Strada. “Drying Induced Stresses in Porous Bodies — An Elastoviscoplastic Model”, Comp. Meth. App. Mech. Eng. 20 (1979) 291–301.

    Article  MATH  Google Scholar 

  14. Thomas, H.R., K. Morgan and R.W. Lewis. “A Fully Non Linear Analysis of Heat and Mass Transfer Problems in Porous Bodies” Int. J. Num. Meth. Eng. 15 (1980) 1381–1393.

    Article  MathSciNet  MATH  Google Scholar 

  15. Thomas, H.R., R.W. Lewis and K. Morgan. “An Application of the Finite Element Method to the Drying of Timber”. Wood and Fiber 11 (1980) 237–243.

    Google Scholar 

  16. White, I.R., R.W. Lewis and W.L. Wood. “The Numerical Simulation of Multiphase Flow Through a Porous Medium and its Application to Reservoir Engineering”. Applied Mathematical Modelling 5 (1981) 165–172.

    Article  MathSciNet  MATH  Google Scholar 

  17. Lewis, R.W., I.R. White and W.L. Wood. “A Starting Algorithm for the Numerical Simulation of Two Phase Flow Problems”. Int. J. Num. Meth. Eng. 12 (1978) 319–329.

    Article  MATH  Google Scholar 

  18. Morgan, K., R.W. Lewis and I.R. White. “The Mechanisms of Ground Surface Subsidence above Compacting Multiphase Reservoirs and their Analysis by the Finite Element Method”. Applied Mathematical Modelling 4 (1980) 217–224.

    Article  MATH  Google Scholar 

  19. Johnson, K.H. “The Finite Element Analysis of Multiphase Flow Through Porous Media”., Ph.D. Thesis, University of Wales, 1980.

    Google Scholar 

  20. White, I.R. “The Finite Element Analysis of Multiphase Flow in Porous Media and Its Application to Reservoir Engineering”, Ph.D. Thesis, University of Wales, 1978.

    Google Scholar 

  21. Hughes, T.J.R. (ed.) Finite Element Methods for Convection Dominated Flows. ASME AMD Vol.34.

    Google Scholar 

  22. Gelinas, R.J., S.K. Doss and K. Miller. “The Moving Finite Element Method: Applications to General Partial Differential Equations with Multiple Large Gradients”. J. Comp. Phys 40 (1981) 202–249.

    Article  MathSciNet  MATH  Google Scholar 

  23. Buckley, S.E. and M.C. Leverett. “Mechanism of Fluid Displacement in Sands”, Trans., AIME 146 (1942), 108.

    Google Scholar 

  24. Gambolati, G. and R.A. Freeze. “Mathematical Simulation of the Subsidence of Venice, 1, Theory”. Water Resour. Res., 9 (3), 721–733, 1973.

    Article  Google Scholar 

  25. Gambolati, G., P. Gatto and R.A. Freeze. “Mathematical Simulation of the Subsidence of Venice, 2, Results”. Water Resour. Res. 10 (3), 563–577, 1974.

    Article  Google Scholar 

  26. Mozzi, G. et al. “Situazione idrogeologica nel sottosuolo di Venezia: Evoluzione delle pressioni di strato negli aquiferi artesiani”. Tech. Rep. 66, Cons. Nax. delle Ric., Lab. per lo Stud, della Din. delle Gronde Masse, Venice, 1975.

    Google Scholar 

  27. Luikov, A.V. Heat and Mass Transfer in Capillary Porous Bodies. Pergamon Pr., Oxford (1966).

    MATH  Google Scholar 

  28. Nikitenko, N.I., I.M. Piyevskiy and A.S. Khomenko. “Determination of stresses arising in drying of ceramic blocks”. Heat Transfer - Soviet Research 5 (1973), 176–179.

    Google Scholar 

  29. Keylwerth, R. “The variation of the temperature of wood during the drying of veneers and sawn wood”. Holz Roh Werkst. 10 (3), 1952, 87–91.

    Article  Google Scholar 

  30. Gray,W.G. and K. O’Neill. “On the General Equations for Flow in Porous Media and Their Reduction to Darcy’s Law”. Water Resour. Res. 12 (2), 1976, 148.

    Article  Google Scholar 

  31. Whitaker, S. “Diffusion and Dispersion in Porous Media”. AIChEJ. 13 (1967), 420.

    Article  Google Scholar 

  32. Bear, J. Dynamics of Fluids in Porous Media. American Elsevier, New York, 1972.

    MATH  Google Scholar 

  33. Geertsma, J. “The Effect of Fluid Pressure Decline on Volume Changes of Porous Rocks”. Trans., AIME, 210 (1957), 331.

    Google Scholar 

  34. Lewis, R.W. and N. Karahanoglu. “Simulation of Subsidence in Geothermal Reservoirs”. 2nd Int. Conf. on Num. Methods in Thermal Problems, Venice 1981, Published by Pineridge Press.

    Google Scholar 

  35. Gear, C.W. “The Automatic Integration of Ordinary Differential Equations”. Comm. Assoc. Comput. Mach. 14 (1971), 176–179.

    MathSciNet  MATH  Google Scholar 

  36. Christie, I., D.F. Griffiths, A.R. Mitchell and O.C. Zienkiewicz. “Finite Element Methods for Second Order Differential Equations with Significant First Derivatives”. Int. J. Num. Meth. Eng. 10 (1976), 1389–1396.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Lewis, R.W., Roberts, P.M. (1984). The Finite Element Method in Porous Media Flow. In: Bear, J., Corapcioglu, M.Y. (eds) Fundamentals of Transport Phenomena in Porous Media. NATO ASI Series, vol 82. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6175-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6175-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6177-7

  • Online ISBN: 978-94-009-6175-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics