Skip to main content

Interpretation of Trace Metal Complexation by Aquatic Organic Matter

  • Chapter
Complexation of trace metals in natural waters

Part of the book series: Developments in Biogeochemistry ((DBGC,volume 1))

Abstract

Although a classification of aquatic organic matter is difficult, an examination of recent literature reviews (Williams (1975), Reuter and Perdue (1977), Buffle (1984)) indicates that the major groups of organic ligands are polysaccharides, proteins and peptides, “pedogenic” (soil derived) refractory organic matter (PROM) and “aquogenic” (formed in situ in the water body) refractory organic matter (AROM). Altogether, the last two groups form the so-called water fulvic and humic acids which represent a large proportion (~ 70–80%) of the organic matter in natural waters. The characteristics of PROM resemble those of soil fulvic acids (SFA: extracted from soil; Schnitzer (1978)), but differ markedly from those of AROM and of humic and fulvic fractions of sediments (Buffle (1984)). The complexation data reported in the literature concern mostly SFA and the fulvic fractions of PROM and AROM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • -Baccini, P., U. Suter (1979) (B1). Melimex, an experimental heavy metal pollution study. Chemical speciation and biological availability of copper in lake water. Schw. Z. Hydrol. 41: 291–314.

    Article  Google Scholar 

  • -Bhat, G.A., J.H. Weber (1982) (B2). Cadmium binding by soil derived fulvic acid measured by anodic stripping voltammetry. Anal. Chim. Acta 141: 95–103.

    Article  Google Scholar 

  • -Bhat, G.A., R.A. Saar, R.B. Smart, J.H. Weber (1981) (B3). Titration of soil derived fulvic acid by copper (II) and measurement of free copper (II) by anodic stripping voltammetry and copper (II) selective electrode. Anal. Chem. 53: 2275–2280.

    Article  Google Scholar 

  • -Bresnahan, W.T., C.L. Grant, J.H. Weber (1978) (B4). Stability constants for the complexation of copper (II) ions with water and soil fulvic acids measured by an ion selective electrode. Anal. Chem. 50: 1675–1679.

    Article  Google Scholar 

  • -Buffle, J. (1981) (B5). Calculation of the surface concentration of the oxidized metal during the stripping step in the anodic stripping techniques and its influence on speciation measurements in natural waters. J. Electroanal. Chem. 125: 273–294.

    Article  CAS  Google Scholar 

  • -Buffle, J. (1984) (B6). The natural organic substances and their metal complexes in aquatic systems. In H. Sigel (Ed.): Circulation of metals in the environment. Vol. 18 of the series: Metal ions in biological systems. M. Dekker, N.Y., Basel.

    Google Scholar 

  • -Buffle, J., A. Cominoli (1980) (B7). Voltammetric study of humic and fulvic substances. Part IV: Behaviour of fulvic substances at the mercury water interface. J. Electroanal. Chem. 121: 273–299.

    Google Scholar 

  • -Buffle, J., P. Deladoey, F.L. Greter, W. Haerdi (1980) (B8). Study of the complex formation of copper (II) by humic and fulvic substances. Anal. Chim. Acta 116: 255–274.

    Article  Google Scholar 

  • -Buffle, J., F.L. Greter (1979) (B9). Voltammetric study of humic and fulvic substances. Part II. J. Electroanal. Chem. 101: 231–251.

    Article  Google Scholar 

  • -Buffle, J., F.L. Greter, W. Haerdi (1977) (B10). Measurement of complexation properties of humic and fulvic acids in natural waters with lead and copper ion-selective electrodes. Anal. Chem. 49: 216–222.

    Article  PubMed  Google Scholar 

  • -Chau, Y.K., P.T.S. Wong (1976) (C1). Complexation of metals in natural waters. In R.W. Andrew, P.V. Hodson, D.E. Konasewitch (Ed.). Toxicity to biota of metal forms in natural waters. Proceedings Workshop, held in Minnesota (7–8/10/1975). International Joint Commission’s Research Advisory Board.

    Google Scholar 

  • -Dauthuille, P. (1982) (D1). Etude électrochimique des complexes Cu (II)- acides fulviques en solution aqueuse. Thèse. Ecole nationale supérieure de chimie de Paris.

    Google Scholar 

  • -Davey, E.W., M.J. Morgan, S.J. Erickson (1973) (D2). A biological measurement of the copper complexation capacity of sea water. Limnol. Oceanogr. 18: 993–997.

    Article  Google Scholar 

  • -Davidson, W. (1978) (D3). Defining the electroanalytically measured species in a natural water sample. J. Electroanal. Chem. 87: 395–404.

    Article  Google Scholar 

  • -Duinker, J.C., C.J.M. Kramer (1977) (D4). An experimental study on the speciation of dissolved zinc, cadmium, lead and copper in river Rhine and North Sea water, by differential pulsed anodic stripping voltammetry. Mar. Chem. 5: 207–228.

    Article  Google Scholar 

  • -Gächter, R., J.S. Davis, A. Mares (1978) (G1). Regulation of copper availability to phytoplancton by macromolecules in lake water. Environ. Sci. Technol. 12: 1416–1421.

    Article  Google Scholar 

  • -Gamble, D.S., M. Schnitzer (1973) (G2). The chemistry of fulvic acid and its reactions with metal ions. In P.C. Singer (Ed.). Trace metals and metalorganic interactions in natural waters. Ann Arbor Science Pub. Inc., Ann Arbor, Mich.

    Google Scholar 

  • -Gamble, D.S., A.W. Underdown, C.H. Langford (1980) (G3). Copper(II) titration of fulvic acid ligand sites with theoretical, potentiometric and spectrophotometric analysis. Anal. Chem. 52: 1901–1908.

    Article  Google Scholar 

  • -Gillespie, P.A., R.F. Vaccaro (1978) (G4). A bacterial bioassay for measuring the copper chelation capacity of sea water. Limnol. Oceanogr. 23: 543–548.

    Article  Google Scholar 

  • -Greter, F.L., J. Buffle, W. Haerdi (1979) (G5). Voltammetric study of humic and fulvic substances. Part. I. J. Electroanal. Chem. 101: 211–229.

    Article  Google Scholar 

  • -Hart, B.T., S.H.R. Davies (1981) (H1). Copper complexing capacity of waters in the Magela creek system, Northern Australia. Environ. Technol. Letters 2: 205–214.

    Article  Google Scholar 

  • -Heyrovsky, J., J. Kuta (1966) (H2). Principles of polarography, Academic Press, N.Y., London.

    Google Scholar 

  • -Hirata, S. (1981) (H3). Stability constants for the complexes of transition metal ions with fulvic and humic acids in sediments measured by gel filtration. Talenta 28: 809–815.

    Article  CAS  Google Scholar 

  • -Hirose, K., Y. Dokiya, Y. Sugimura (1982) (H4). Determination of conditional stability constants of organic copper and zinc complexes dissolved in sea water using ligand exchange method with EDTA. Mar. Chem. 11: 343–354.

    Article  Google Scholar 

  • -Hoffman, M.R., E.C. Yost, S.J. Eisenreich, W.J. Maier (1981) (H5). Characterization of soluble and colloidal phase metal complexes in river water by ultrafiltration. A mass-balance approach. Environ. Sci. Technol. 15: 655–661.

    Article  PubMed  Google Scholar 

  • -Mantoura, R.F.C. (1981) (M1). Organo-metallic interactions in natural waters. In E.K. Duursma, R. Dawson (Ed.). Marine organic chemistry, Elsevier Oceanography Series 31. Elsevier Sci. Publ. Cy., Amsterdam. N.Y.

    Google Scholar 

  • -Mantoura, R.F.C., J.P. Riley (1975) (M2). The use of gel filtration in the study of metal binding hy humic acids and related compounds. Anal. Chim. Acta 78: 193–200.

    Article  Google Scholar 

  • -Reuter, J.H., E.M. Perdue (1977) (R1). Importance of heavy metal-organic matter interaction in natural water. Geochim. Cosmochim. Acta 41: 326–334.

    Google Scholar 

  • -Ryan, D.K., J.H. Weber (1982) (R2). Copper (II) complexing capacities of natural waters by fluorescence quenching. Environ. Sci. Technol. 16: 866–872.

    Article  PubMed  Google Scholar 

  • -Saha, S.K., S.L. Dutta, S.K. Chakravarti (1979) (S1). Polarographic study of metal-humic acid interaction. Determination of stability constants of cadmium and zinc-humic acids at different pH. J. Indian Chem. Soc. 56: 1129–1134.

    Google Scholar 

  • -Schnitzer, M. (1978) (S2). Humic substances: chemistry and reactions. In M. Schnitzer, S.U. Khan, Soil organic matter. Developments in soil science 8. Elsevier Sci. Publ. Co., Amsterdam, N.Y.

    Google Scholar 

  • -Schnitzer, M., E.H. Hansen (1970) (S3). Organo-metallic interactions in soils: an evaluation of methods for the determination of stability constants of metal-fulvic acids complexes. Soil Sci. 109: 333–340.

    Article  Google Scholar 

  • -Shuman, M.S., G.P. Woodward (1977) (S4). Stability constants of copper-organic chelates in aquatic samples. Environm. Sci. Technol. 11: 809–813.

    Article  Google Scholar 

  • -Shuman, M.S., J.L. Cromer (1979) (S5). Copper association with aquatic fulvic and humic acids. Estimation of conditional formation constants with a titrimetric anodic stripping voltammetry procedure. Environ. Sci. Technol. 13: 543–545.

    Article  Google Scholar 

  • -Srna, R.F., K.S. Garrett, S.M. Miller, A.B. Thum (1980) (S6). Copper complexation capacity of marine water samples from southern California. Environ. Sci. Technol. 14: 1482–1486.

    Article  PubMed  Google Scholar 

  • -Stokes, P., T.C. Hutchinson (1976) (S7). Copper toxicity to phytoplaneton, as affected by organic ligands, other cations and inherent tolerance of algae to copper. In R.W. Andrew, P.V. Hodson, D.E. Konasewitch, Toxicity to Biota of Metal Forms in Natural Waters. Proc. Workshop held in Minnesota (7–8/10/1976). International Joint Commission’s Research Advisory Board.

    Google Scholar 

  • -Sunda, W.C., P.J. Hanson (1979) (S8). Chemical speciation of copper in river water. Effect of total copper, pH, carbonate, and dissolved organic matter. In E.A. Jenne (Ed.). Chemical modeling in aqueous systems. American Chemical Society, Washington.

    Google Scholar 

  • -Truitt, R.E., J.H. Weber (1981) (T1). Determination of complexing capacity of fulvic acid for copper (II) and cadmium (II) by dialysis titration. Anal. Chem. 53: 337–342.

    Article  Google Scholar 

  • -Truitt, R.E., J.H. Weber (1981) (T2). Copper(II) and cadmium(II) binding abilities of some New Hampshire freshwaters determined by dialysis titration. Environ. Sci. Technol. 15: 1204–1208.

    Article  PubMed  Google Scholar 

  • -Van den Berg, C.M.G. (1982). (VI). Determination of copper complexation with natural organic ligands in sea water, by equilibration with MnO2. Part II. Mar. Chem. 11: 323–342.

    Article  Google Scholar 

  • -Van den Berg, C.M.G., J.R. Kramer (1979) (V2). Determination of complexing capacities of ligands in natural waters and conditional stability constants of the copper complexes by means of manganese dioxide. Anal. Chim. Acta 106: 113–120.

    Article  Google Scholar 

  • -Van Leeuwen, H.P. (1978) (V3). Pulse polarography of heavy metal ions in the presence of natural complexing agents. Lecture at 29th ISE Meeting, Budapest.

    Google Scholar 

  • - Williams, P.J. le B. (1975) (W1). Biological and chemical aspects of dissolved organic material in sea water. In J.P. Riley, G. Skirrow (Ed.). Chemical Oceanography, vol. 2, Academic Press, London.

    Google Scholar 

  • -Wilson, D.E., P. Kinney (1977) (W2). Effects of polymeric charge variations on the proton metal ion equilibria of humic materials. Limnol. Oceanogr. 22: 281–289.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buffle, J., Tessier, A., Haerdi, W. (1984). Interpretation of Trace Metal Complexation by Aquatic Organic Matter. In: Kramer, C.J.M., Duinker, J.C. (eds) Complexation of trace metals in natural waters. Developments in Biogeochemistry, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6167-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6167-8_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6169-2

  • Online ISBN: 978-94-009-6167-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics