Skip to main content

The Activity of Metal Ions at High Ionic Strengths

  • Chapter
Complexation of trace metals in natural waters

Part of the book series: Developments in Biogeochemistry ((DBGC,volume 1))

Abstract

The effect of chemical composition on the activity of metal ions in natural waters can be determined by using ionic interaction models (Whitfield, 1979). The two most popular models used by various workers in recent years are the ion pairing model (Dickson and Whitfield, 1981; Millero and Schreiber, 1982) and the specific interaction model as formulated by Pitzer (Pitzer, 1973; Whitfield, 1975; Harvie and Weare, 1980; Krumgalz and Millero, 1982; Millero, 1983a,b). The specific interaction model yields reliable activity estimates for the major ionic components, while the ion pairing model yields reliable estimates for the minor ionic components (Whitfield, 1979; Millero and Schreiber, 1982). The failure of the equations of Pitzer is not due to deficiencies in the model, but a lack of parameters for the interactions of Mg2+ and Ca2+ ions with minor anions (OH-, HCO -3 , CO 2-3 , etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • -Byrne, R. H. and W. L. Miller, 1983. Medium composition dependence of lead (II) complexation by chloride ion. Am. J. Sci. — in press.

    Google Scholar 

  • - Dickson, A. G. and M. Whitfield, 1981. An ion-association model for estimating acidity constants (at 25°C. and 1 atm total pressure) in electrolyte mixtures related to seawater (ionic strength < 1 mol kg -1H2O). Mar. Chem. 10: 315–333.

    Article  CAS  Google Scholar 

  • - Dyrssen, D. and I. Hansson, 1973. Ionic medium effects in seawater — a comparison of acidity constants of carbonic acid and boric acid in sodium chloride and synthetic seawater. Mar. Chem. 1: 137–149.

    Article  CAS  Google Scholar 

  • - Harvie, C. E. and J. H. Weare, 1980. The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25°C. Geochim. Cosmochim. Acta 44: 981–997.

    Article  CAS  Google Scholar 

  • - Krumgalz, B. S. and F. J. Millero, 1982. Physico-chemical study of the Dead Sea waters. I. Activity coefficients of major ions in Dead Sea water. Mar. Chem. 11: 209–222.

    Article  CAS  Google Scholar 

  • - Mayer, J. E., 1950. The theory of ionic solutions. J. Chem. Phys. 18: 1426–1436.

    Article  CAS  Google Scholar 

  • - Millero, F. J., 1974. Seawater as a multicomponent electrolyte solution. In: E. D. Goldberg (Ed), The Sea, Ideas and Observations. John Wiley & Sons, Inc., New York, New York, pp. 3–80.

    Google Scholar 

  • - Millero, F. J., 1983a. Use of models to determine ionic interactions in natural waters. Thallassia Jugoslavica, in press.

    Google Scholar 

  • - Millero, F. J., 1983b. The estimation of the pKHA of acids in seawater using Pitzer equations. Geochim. Cosmochim. 47: 2121–2129.

    Article  CAS  Google Scholar 

  • - Millero, F. J. and R. H. Byrne, 1983. Use of Pitzer’s equations to determine the media effect on the formation of lead chloro complexes. Geochim. Cosmochim. Acta, in press.

    Google Scholar 

  • - Millero, F. J. and D. R. Schreiber, 1982. Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters. Amer. J. Sci. 282: 1508–1540.

    Article  Google Scholar 

  • - Millero, F. J. and V. Thurmond, 1983. The ionization of carbonic acid in Na-Mg-Cl solutions at 25°C. J. Solution Chem., 12:401–412.

    Article  CAS  Google Scholar 

  • - Millero, F. J., P. Milne and V. Thurmond, 1983. The solubility of calcite, strontianite and witherite in NaCl solutions at 25°C. Geochim. et Cosmochim. Acta, in press.

    Google Scholar 

  • - Peiper, J. C. and K. S. Pitzer, 1982. Thermodynamics of aqueous carbonate solutions including mixtures of carbonate, bicarbonate and chloride. J. Chem. Thermodyn. 14: 613–638.

    Article  CAS  Google Scholar 

  • - Pitzer, K. S., 1973. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77: 268–277.

    Article  CAS  Google Scholar 

  • - Pitzer, K. S., 1975. Thermodynamics of electrolytes, V. Effects of higher order electrostatic terms. J. Solution Chem. 4: 249–265.

    Article  CAS  Google Scholar 

  • - Pitzer, K. S., 1979. Ion interaction approach. In: R. M. Pytkowicz (Ed), Activity coefficients in electrolyte solutions. Vol. I, CRC Press, Inc., Boca Raton, Fla., pp. 157–208.

    Google Scholar 

  • - Pitzer, K. S., and J. J. Kim, 1974. Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96: 5701–5707.

    Article  CAS  Google Scholar 

  • - Pitzer, K. S. and G. Mayorga, 1973. Thermodynamics of electrolytes, II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77: 2300–2308.

    Article  CAS  Google Scholar 

  • - Pitzer, K. S. and G. Mayorga, 1974. Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2:2 electrolytes. J. Solution Chem. 3: 539–546.

    Article  CAS  Google Scholar 

  • - Pitzer, K. S. and L. F. Silvester, 1976. Thermodynamics of electrolytes. VI. Weak electrolytes including H3PO4. J. Solution Chem. 5: 269–278.

    Article  CAS  Google Scholar 

  • - Pytkowicz, R. M. and J. E. Hawley, 1974. Bicarbonate and carbonate ion-pairs and a model of seawater at 25°C. Limnol. Oceanogr. 19: 223–234.

    Article  Google Scholar 

  • - Sillen, L. G. and A. E. Martell, 1964. Stability constants of metalion complexes. The Chemical Society.

    Google Scholar 

  • - Thurmond, V. and F. J. Millero, 1982. Ionization of carbonic acid in sodium chloride solutions at 25°C. J. Solution Chem. 11: 447–456.

    Article  CAS  Google Scholar 

  • - Whitfield, M., 1975. The extension of chemical models for seawater to include trace components at 25°C and 1 atm. pressure. Geochim. Cosmochim. Acta, 39: 1545–1557.

    Article  CAS  Google Scholar 

  • - Whitfield, M., 1979. Activity coefficients in natural waters. In: R. M. Pytkowicz (Ed), Activity coefficients in electrolyte solutions. Vol. II, CRC Press, Inc., Roca Raton, Fla.

    Google Scholar 

  • - Zirino, A. and S. Yamamoto. 1972. A pH-dependent model for the chemical speciation of copper, zinc, cadmium, and lead in seawater. Limnology Oceanography 17, 661–671.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Millero, F.J. (1984). The Activity of Metal Ions at High Ionic Strengths. In: Kramer, C.J.M., Duinker, J.C. (eds) Complexation of trace metals in natural waters. Developments in Biogeochemistry, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6167-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6167-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6169-2

  • Online ISBN: 978-94-009-6167-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics