Skip to main content

Part of the book series: Engineering Application of Fracture Mechanics ((EAFM,volume 4))

Abstract

Cracking is an essential feature of the behavior of concrete structures. Even under service loads, concrete structures are normally full of cracks. Clearly, cracking should be taken into account in predicting ultimate load capacity as well as behavior in service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazant, Z.P., and Oh. B.H., Crack Band Theory for Fracture of Concrete, Materials and Structures (RILEM, Paris), Vol. 16, pp. 155–177 (1983) (based on [130]).

    Google Scholar 

  2. Bazant, Z.P., and Kim, S.S., Plastic-Fracturing Theory for Concrete, Journal of the Engineering Mechanics Division, ASCE, Vol. 105, No. EM3, Proc. Paper 14653, pp. 407–428 (1979).

    Google Scholar 

  3. Bazant, Z.P., Crack Band Model for Fracture of Geomaterials, Proc., 4th Intern. Conf. on Numerical Methods in Geomechanics, held in Edmonton, Alberta, Canada, ed. by Z. Eisenstein, Vol. 3 (1982), pp. 1137–1152.

    Google Scholar 

  4. Bazant, Z.P., Instability, Ductility and Size Effect in Strain-Softening Concrete, J. of the Engineering Mechanics Division ASCE, Vol. 102, No. EM2, pp. 331–344 - Paper 12042 (1976).

    Google Scholar 

  5. Bazant, Z.P., and Panula, L., Statistical Stability Effects in Concrete Failure, J. of the Engineering Mechanics Division, ASCE, Vol. 104, No. EM5, pp. 1195–1212, Paper 14074 (1978).

    Google Scholar 

  6. Bazant, Z.P., and Cedolin, L., Blunt Crack Band Propagation in Finite Element Analysis, Journal of the Engineering Mechanics Division, ASCE, Vol. 105, No. EM2, Proc. Paper 14529, pp. 297–315 (1979).

    Google Scholar 

  7. Cedolin, L., and Bazant, Z.P., Effect of Finite Element Choice in Blunt Crack Band Analysis, Computer Methods in Applied Mechanics and Engineering, Vol. 24, No. 3, pp. 305–316 (1980).

    ADS  MATH  Google Scholar 

  8. Rashid, Y.R., Analysis of Prestressed Concrete Pressure Vessels, Nuclear Engng. and Design, Vol. 7, No. 4, pp. 334–344 (1968).

    Google Scholar 

  9. Mindess, S., and Diamond, S., A Preliminary SEM Study of Crack Propagation in Mortar, Cement and Concrete Research, Vol. 10, pp. 509–519 (1980).

    Google Scholar 

  10. Cedolin, L., Dei Poli, S., and Iori, L. Experimental Determination of the Fracture Process Zone in Concrete, Cement and Concrete Research, Vol. 13, pp. 557–567 (1983).

    Google Scholar 

  11. Cedolin, L., dei Poli, S., and Iori, L., Experimental Determination of the Stress–Strain Curve and Fracture Zone for Concrete in Tension, Proc., Int. Conf. on Constitutive Laws for Engineering Materials, ed. by C. Desai, University of Arizona, Tucson (1983).

    Google Scholar 

  12. Barenblatt, G.I., The Formation of Equilibrium Cracks During Brittle Fracture, General Ideas and Hypothesis. Axially–Symmetric Cracks, Prikladnaya Matematika i Mekhanika, Vol. 23, No. 3, pp. 434–444 (1959).

    MathSciNet  Google Scholar 

  13. Dugdale, D.S., Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids, Vol. 8, pp. 100–108 (1960).

    ADS  Google Scholar 

  14. Kfouri, A.P., and Miller, K.J., Stress Displacement, Line Integral and Closure Energy Determinations of Crack Tip Stress Intensity Factors, Int. Journal of Pres. Ves. and Piping, Vol. 2, No. 3, pp. 179–191 (1974).

    Google Scholar 

  15. Kfouri, A.P., and Rice, J.R., Elastic/Plastic Separation Energy Rate for Crack Advance in Finite Growth Steps, in Fracture 1977 (Proc. of the 4th Intern. Conf. on Fracture, held in Waterloo, Ontario, June 1977), ed. by D.M.R. Taplin, University of Waterloo Press, Vol. 1, pp. 43–59 (1977).

    Google Scholar 

  16. Knauss, W.C., On the Steady Propagation of a Crack in a Viscoelastic Sheet: Experiments and Analysis, in The Deformation in Fracture of High Polymers, ed. by H.H. Kausch, Pub. Plenum Press, pp. 501–541 (1974).

    Google Scholar 

  17. Wnuk, M.P., Quasi-Static Extension of a Tensile Crack Contained in Viscoelastic Plastic Solid, Journal of Applied Mechanics, ASME, Vol. 41, No. 1, pp. 234–248 (1974).

    MATH  MathSciNet  Google Scholar 

  18. Hillerborg, A., Modeer, M., and Petersson, P.E., Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cement and Concrete Research, Vol. 6, pp. 773–782 (1976).

    Google Scholar 

  19. Petersson, P.E., Fracture Energy of Concrete; Method of Determination, Cement and Concrete Research, Vol. 10, 1980, pp. 78–89, and Fracture Energy of Concrete: Practical Performance and Experimental Results, Cement and Concrete Research, Vol. 10, pp. 91–101 (1980).

    Google Scholar 

  20. Suidan, M., and Schnobrich, W.C., Finite Element Analysis of Reinforced Concrete, Journal of the Structural Division, ASCE, Vol. 99, No. ST10, Proc. Paper 10081, pp. 2109–2122 (1973).

    Google Scholar 

  21. Evans, R.H., and Marathe, M.S., Microcracking and Stress–Strain Curves for Concrete in Tension, Materials and Structures (RILEM, Paris), No. 1, Jan.–Feb., pp. 61–64 (1968).

    Google Scholar 

  22. Heilmann, H.G., Hilsdorf, H.H., and Finsterwalder, K., Festigkeit und Verformung von Beton unter Zugspanungen, Deutscher Ausschuss fur Stahlbeton, Heft 203, W Ernst & Sohn, West Berlin (1969).

    Google Scholar 

  23. Rüsch, H., and Hilsdorf, H., Deformation Characteristics of Concrete under Axial Tension, Voruntersuchungen, Bericht Nr. 44, Munich (1963).

    Google Scholar 

  24. Hughes, B.P., and Chapman, G.P., The Complete Stress–Strain Curve for Concrete in Direct Tension, Bulletin RILEM, No. 30, pp. 95–97 (1966).

    Google Scholar 

  25. Petersson, P.E., Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials, Doctoral Dissertation, Lund Institute of Technology, Lund, Sweden (1981).

    Google Scholar 

  26. Reinhardt, H.W., and Walraven, J.C., Cracks in Concrete Subject to Shear, J. of the Structural Division ASCE, Vol. 108, No. ST1, Paper 16802, pp. 207–224 (1982).

    Google Scholar 

  27. ASCE State-of-the-Art Report on Finite Element Analysis of Reinforced Concrete, prepared by a Task Committee chaired by A. Nilson, Am. Soc. of Civil Engrs., New York (1982).

    Google Scholar 

  28. Bazant, Z.P., and Gambarova, P., Rough Cracks in Reinforced Concrete, Journal of the Structural Div., Proc. ASCE, Vol. 106, No. ST4, April 1980, pp. 819–842, Paper 15330; Discussion pp. 2579–2581, pp. 1377–1388 (1981).

    Google Scholar 

  29. Bazant, Z.P., and Tsubaki, T., Slip-Dilatancy Model for Cracked Reinforced Concrete, Journal of the Structural Division, ASCE, Vol. 106, No. ST9, Paper No. 15704, pp. 1947–1966 (1980).

    Google Scholar 

  30. Kupfer, H.B., and Gerstle, K.H., Behavior of Concrete under Biaxial Stress, Journal of the Engineering Mechanics Division, ASCE, Vol. 99, No. EM4, Proc. Paper 9917, pp. 853–866 (1973).

    Google Scholar 

  31. Liu, T.C.Y., Nilson, A.H., and Slate, F.O., Biaxial Stress–Strain Relations for Con–crete, Journal of the Structural Division, ASCE, Vol. 98, No. ST5, Proc. Paper 8905, pp. 1025–1034 (1972).

    Google Scholar 

  32. Rosenthal, I., and Glucklich, J., Strength of Plain Concrete under Biaxial Stress, ACI Journal, pp. 903–914 (1970).

    Google Scholar 

  33. Kachanov, L.M., Time of Rupture Process Under Creep Conditions, Izv. Akad, Nauk, SSR, Otd. Tekh, Nauk, No. 8, pp. 26–31 (1958).

    Google Scholar 

  34. Janson, J., and Hult, J., Fracture Mechanics and Damage Mechanics,–A Combined Approach, Journal de Mecanique Appliquee, Vol. 1, No. 1, pp. 69–84 (1977).

    Google Scholar 

  35. Loland, K.E., Continuous Damage Model for Load–Response Estimation of Concrete, Cement and Concrete Research, Vol. 10, pp. 395–402 (1980).

    Google Scholar 

  36. Lorrain, M., On the Application of the Damage Theory to Fracture Mechanics of Concrete, A State-of-the-Art Report, Civil Engineering Department, I.N.S.A., 31077 Toulouse, Cedex, France.

    Google Scholar 

  37. Mazars, Mechanical Damage and Fracture of Concrete Structures, 5th International Conference on Fracture, Edited by D. Francis, Cannes, France, Vol. 4, pp. 1499–1506 (1981).

    Google Scholar 

  38. Arrea, M., Ingraffea, A.R., Mixed–Mode Crack Propagation in Mortar and Concrete, Report No. 81–83, Dept. of Structural Engineering, Cornell University, Ithaca, N.Y., Feb. (1982).

    Google Scholar 

  39. Knott, J.F., Fundamentals of Fracture Mechanics, Butterworths, London, England (1973).

    Google Scholar 

  40. Parker, A.P., The Mechanics of Fracture and Fatigue, E. & F.N. Spon, Ltd. - Methuen, London (1981).

    Google Scholar 

  41. Broek, D., Elementary Engineering Fracture Mechanics, Noordhoff International Publishing, Leyden, Netherlands (1974).

    Google Scholar 

  42. Mindess, S., The Application of Fracture Mechanics to Cement and Concrete: A Historical Review, Chapter I in ‘Fracture Mechanics of Concrete’, ed. by F.H. Wittmann, Elsevier, The Netherlands (1983).

    Google Scholar 

  43. Brown, J.H., Measuring the Fracture Toughness of Cement Paste and Mortar, Magazine of Concrete Research, Vol. 24, No. 81, pp. 185–196 (1972).

    Google Scholar 

  44. Carpinteri, A., Experimental Determination of Fracture Toughness Parameters Klc and JIC for Aggregative Materials, Advances in Fracture Research, (Proc., 5th International Conference on Fracture, Cannes, ed. by D. Francis, Vol. 4, pp. 1491–1498 (1981).

    Google Scholar 

  45. Carpinteri, A., Static and Energetic Fracture Parameters for Rocks and Concretes, Report, Instituto di Scienza delle Costruzioni–Ingegneria, University of Bologna, Italy (1980).

    Google Scholar 

  46. Entov, V.M., and Yagust V.I., Experimental Investigation of Laws Governing Quasi– Static Development of Macrocracks in Concrete,: Mechanics of Solids (translation from Russian), Vol. 10, No. 4, pp. 87–95 (1975).

    Google Scholar 

  47. Gjørv, O.E., Sorensen, S.I., and Arnesen, A., Notch Sensitivity and Fracture Tough–ness of Concrete, Cement and Concrete Research, Vol. 7, pp. 333–344 (1977).

    Google Scholar 

  48. Huang, C.M.J., Finite Element and Experimental Studies of Stress Intensity Factor for Concrete Beams, Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, Kansas State University, Kansas (1981).

    Google Scholar 

  49. Kaplan, M.F., Crack Propagation and the Fracture of Concrete, American Concrete Institute Journal, Vol. 58, No. 11 (1961).

    Google Scholar 

  50. Kesler, C.E., Naus, D.J., and Lott, J.L., Fracture Mechanics — Its Applicability to Concrete, International Conference on the Mechanical Behavior of Materials, Kyoto, August (1971).

    Google Scholar 

  51. Mindess, S., Lawrence, F.V., and Kesler, C.E., The J-Integral As a Fracture Criterion for Fiber Reinforced Concrete, Cement and Concrete Research, Vol. 7, pp. 731–742 (1977).

    Google Scholar 

  52. Naus, D.J., Applicability of Linear–Elastic Fracture Mechanics to Portland Cement Concretes, Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, University of Illinois at Urbana-Champaign (1971).

    Google Scholar 

  53. Shah, S.P., and McGarry, F.J., Griffith Fracture Criterion and Concrete, Journal of the Engineering Mechanics Division, ASCE, Vol. 97, No. EM6, Proc. Paper 8597, pp. 1663–1676 (1971).

    Google Scholar 

  54. Sok, C., Baron, J., and Francis, D., Mecanique de la Rupture Appliquee au Beton Hydraulique, Cement and Concrete Research, Vol. 9, pp. 641–648 (1979).

    Google Scholar 

  55. Swartz, S.E., Hu, K.K., Fartash, M., and Huang, C.M.J., Stress Intensity Factors for Plain Concrete in Bending — Prenotched Versus Precracked Beams, Report, Department of Civil Engineering, Kansas State University, Kansas (1981).

    Google Scholar 

  56. Walsh, P.F., Fracture of Plain Concrete,: The Indian Concrete Journal, Vol. 46, No. 11, pp. 469, 470, and 476 (1979).

    Google Scholar 

  57. Wecharatana, M., and Shah, S.P., Resistance to Crack Growth in Portland Cement Composites, Report, Department of Material Engineering, University of Illinois at Chicago Circle, Chicago, Illinois (1980).

    Google Scholar 

  58. Bazant, Z.P., and Oh, B.H., Rock Fracture via Stress-Strain Relations, Concrete and Geomaterials, Report No. 82-ll/665r, Northwestern University, Evanston, Illinois (1982); also to appear in ASCE Journal of Engineering Mechanics, Vol. 110 (1984).

    Google Scholar 

  59. Bazant, Z.P., and Cedolin, L., Fracture Mechanics of Reinforced Concrete, Journal of the Engineering Mechanics Division, ASCE, Vol. 106, No. EM6, Proc. Paper 15917, December 1980, pp. 1287–1306; with Discussion and Closure in Vol. 108, EM., pp. 464–471 (1982).

    Google Scholar 

  60. Bazant, Z.P., and Cedolin, L., Finite Element Modeling of Crack Band Propagation, Journal of Structural Engineering, ASCE, Vol. 109, No. ST2, pp. 69–92 (1983).

    Google Scholar 

  61. Flanagan, D.P., and Belytschko, T., A Uniform Strain Hexahedron and Quaderlateral with Orthogonal Hourglass Control, Int. J. for Numerical Methods in Engineering, Vol. 17, pp. 679–706 (1981).

    MATH  Google Scholar 

  62. Marchertas, A., Bazant, Z.P., Belytschko, T., and Fistedis, S.H., Extension of HCDA Safety Analysis of Large PCRV Containment Structures, Preprints 4th Intern. Conf. on Struct. Mech. in Reactor Technology, San Francisco, Paper E4/1 (1977).

    Google Scholar 

  63. Marchertas, A.H., Beltyschko, T.B., Bazant, Z.P., Transient Analysis of LMFBR Reinforced/Prestressed Concrete Containment, Trans, 5th Intern, Conf. on Struct. Mech. in Reactor Tech., Vol. H, Paper H4/1, West Berlin, ed. by T.A. Jaeger and B.A. Boley, publ. by North Holland (1979).

    Google Scholar 

  64. Marchertas, A.H., Fistedis, S.H., Bazant, Z.P., and Belytschko, T., Analysis and Application of Prestressed Concrete Reactor Vessels for LMFBR Containment, Nuclear Engng. and Design, Vol. 49 pp. 155–173 (1978).

    Google Scholar 

  65. Building Code Requirements for Reinforced Concrete (ACI Standard 318–377), Am. Concrete Institute, Detroit (1977).

    Google Scholar 

  66. Marchertas, A.H., Kulak, R.F., and Pan, Y.C., Performance of Blunt Crack Approach Within a General Purpose Code, in Nonlinear Numerical Analysis of Reinforced Concrete, ed. by L.E. Schwer, Am. Soc. of Mech. Engrs., New York 1982, (presented at ASME Winter Annual Meeting, Phoenix, pp. 107–123 (1982).

    Google Scholar 

  67. Bžzant, Z.P., Pfeiffer, P., Finite Element Crack Band Analysis, in preparation.

    Google Scholar 

  68. Bažant, Z.P., Pfeiffer, P., Marchertas, A.H., Blunt Crack Band Propagation in Finite Element Analysis for Concrete Structures, Preprints 7th Int. Conf. on Structural Mechanics in Reactor Technology, Chicago (1983).

    Google Scholar 

  69. Rice, J.R., Mathematical Analysis in the Mechanics of Fracture, in Fracture, an Advance Treatise, H. Liebowitz, ed. Vol. 2, Academic Press, New York, N.Y., pp. 191–250 (1968).

    Google Scholar 

  70. Haugeneder, E., A Note of Finite Element Analysis of Blunt Crack Band Propagation, Proc., Intern. Conf. on Constitutive Equations for Engineering Materials, ed. by C. Desai, University of Arizona, Tucson, pp. 561–564 (1983).

    Google Scholar 

  71. Pan, Y.C., Marchertas, A.H., Kennedy, J.M., Finite Element of Blunt Crack Band Propagation, A Modified J–Integral Approach, Preprints, 7th Intern. Conf. on Structural Mechanics in Reactor Technology, Paper H, Chicago (1983).

    Google Scholar 

  72. Rice, J.R., The Localization of Plastic Deformation, Preprints of the 14th IUTAM Congress (Int. Union of Theor. and Appl. Mech.), held in Delft, Netherlands, Edited by W.T. Koiter, North Holland Publishing Co, Amsterdam, pp. 207–220 (1976).

    Google Scholar 

  73. Bazant, Z.P., Tsubaki, T., and Belytschko, T.B., Concrete Reinforcing Net: Safe Design, Journal of the Structural Division, Proc. ASCE Vol. 106, No. ST9, pp. 1899–1906, Paper 15705 (1980).

    Google Scholar 

  74. Bazant, Z.P., and Wahab, A.B., Instability and Spacing of Cooling or Shrinkage Cracks, Journal of the Engineering Mechanics Division, ASCE, Vol. 105, No. EM5, Proc. Paper 14933, pp. 873–889 (1979),

    Google Scholar 

  75. Bazant, Z.P., and Wahab, A.B., Stability of Parallel Cracks in Solids Reinforced by Bars, International Journal of Solids and Structures, Vol. 16, pp. 97–105 (1980).

    Google Scholar 

  76. Branson, D.E., Design Procedures for Computing Deflection, ACI Journal, Vol. 65, No. 9, pp. 730–742 (1968).

    Google Scholar 

  77. Kani, G.N J., Basic Facts Concerning Shear Failure, Part I and Part II, J. of ACI, Vol. 63, No. 6, pp. 675–692 (1966).

    Google Scholar 

  78. Leonhardt, F., and Walther, R., Beitrage zur Behandlung der Schubprobleme im Stahlbetonbau, Beton–u Stahlbetonbau, Vol. 56, No. 12 (1961), Vol. 57, No. 2, 3, 6, 7, 8, (1962), Vol. 58, No. 8, 9 (1963).

    Google Scholar 

  79. Bhal, N.S. Uber den Einfluss der Balkenhohe auf Schubtragfahihkeit von einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung, Dissertation, Unversitat Stuttgart (1968).

    Google Scholar 

  80. Walraven, J.C., The Influence of Depth on the Shear Strength of Lightweight Concrete Beams without Shear Reinforcement, Stevin Laboratory Report No. 5–78–4, Delft University of Technology (1978).

    Google Scholar 

  81. Taylor, H.P.J., The Shear Strength of Large Beams, J. of the Structural Division ASCE, Vol. 98, pp. 2473–2490 (1972).

    Google Scholar 

  82. Rusch, M., Haugli, F.R., and Mayer, M., Schubversuche an Stahlbeton Rechteckbalken mit Gleichmassig Verteilter Belastung, Deutscher Ausschuss fur Stahlbeton, Heft 145, W. Ernst u. Sohn, West Berlin (1962).

    Google Scholar 

  83. Swamy, R.N., and Qureshi, S.A., Strength, Cracking and Deformation Similitude in Reinforced T–Beams under Bending and Shear, Part I and II, J. of Am. Concrete Inst., Vol. 68, No. 3, pp. 187–195 (1971).

    Google Scholar 

  84. Bazant, Z.P., Kim. J.K., Size Effect in Shear Failure of Longitudinally Reinforced Beams, Am. Concrete Institute Journal Vol. 81 (1984), in press.

    Google Scholar 

  85. Reinhardt, H.W., Masstabeinfluss bei Schubversuchen im Light der Bruchmechanik (Size Effect in Shear Tests in the Light of Fracture Mechanics), Beton-und Stahlbe- tonbau, Vol. 7, No. 1, pp. 19–21 (1981).

    MathSciNet  Google Scholar 

  86. Reinhardt, H.W., Similitude of Brittle Fracture of Structural Concrete, Proc. IABSE Colloquium Advanced Mechanics of Reinforced Concrete, Delft, pp. 201–210 (1981).

    Google Scholar 

  87. Bazant, Z.P., Oh, B.H., Deflections of Cracked Reinforced Concrete Beams, Am. Concrete Institute Journal, Vol. 81 (1984), in press.

    Google Scholar 

  88. Bazant, Z.P., Oh, B.H., Spacing of Cracks in Reinforced Concrete, J. of Engng. Mech. ASCE, in press.

    Google Scholar 

  89. Agrawal, G.L., Tulin, L.G., and Gerstle, K.H., Response of Doubly Reinforced Concrete Beams to Cyclic Loading, ACI Journal, Proc. Vol. 63, No. 7, pp. 823–835 (1965).

    Google Scholar 

  90. Bruns, N.H., and Siess, C.P., Plastic Hinging in Reinforced Concrete, J. of the Structural Division ASCE, Vol. 92, No. ST5, pp. 45–64 (1966).

    Google Scholar 

  91. Burns, N.H., and Siess, C.P., Repeated and Reversed Loading in Reinforced Concrete, J. of the Structural Division ASCE, Vol. 92, No. ST5, pp. 65–78 (1966).

    Google Scholar 

  92. Sinha, B.P., Gerstle, K.H., and Tulin, L.G. Response of Singly Reinforced Beams of Cyclic Loading, ACI Journal, Proc. Vol. 61, No. 8, pp. 1021–1038 (1964).

    Google Scholar 

  93. Bazant, Z.P., and Panula, L., Practical Prediction of Time-Dependent Deformations of Concrete, Materials and Structures (RILEM, Paris), Vol. 11, pp. 307–328, 415–434 (1978), Vol. 12, pp. 169–183 (1979).

    Google Scholar 

  94. Hollington, M.R., A Series of Long–Term Tests to Investigate the Deflection of Representative Precast Concrete Floor Components, Technical Report TRA 442, Cement and Concrete Association (London) (1970).

    Google Scholar 

  95. Krafft, J.M., Sullivan, A.M. Boyle. R.W., Effect of Dimensions on Fast Fracture Instability of Notched Sheets, Cranfield Symposium, Vol. I, pp. 8–28 (1961).

    Google Scholar 

  96. Bazant, Z.P., Cedolin, L., Approximate Linear Analysis of Concrete Fracture by R–Curves, Journal of Structural Engineering ASCE, Vol. 110, No. 5T6, June (1984).

    Google Scholar 

  97. Tada, H., Paris, P.C., and Irwin, G.R., The Stress Analysis of Cracks Handbook, Del Research Corp., Hellertown, Pa. (1973).

    Google Scholar 

  98. Wnuk, M., Bazant, Z.P., and Law, E., Stable growth of Fracture in Bottle Aggregate Materials, Theoretical and Applied fracture Mechanics, Vol. 2 (1984) in press.

    Google Scholar 

  99. Bazant, Z.P., Ohtsubo, H., and Aoh, K., Stability and Post-Critical Growth of a System of Cooling or Shrinkage Cracks, International Journal of Fracture, Vol. 15, No. 5., pp. 443–456 (1979).

    Google Scholar 

  100. Chi, M., and Kirstein, A.F., Flexural Cracks in Reinforced Concrete Beams, Journal, American Concrete Institute, Proc., Vol. 54, No. 10, pp. 865–878 (1958).

    Google Scholar 

  101. Clark, A.P., Cracking in Reinforced Concrete Flexural Member, Journal, American Concrete Institute, Proc., Vol. 52, No. 8, pp. 851–862 (1956).

    Google Scholar 

  102. Kaar, P.H., and Mattock, A.H., High Strength Bars as Concrete Reinforcement, Part 4. Control of Cracking, Journal, Portland Cement Association Research and Development Laboratories, Vol. 5, No. 1, pp. 15–38 (1963).

    Google Scholar 

  103. Hognestad, E., High Strength Bars as Concrete Reinforcement, Part 2. Control of Flexural Cracking, Journal, Portland Cement Association Research and Development Laboratories, Vol. 4, No. 1, pp. 46–63 (1962).

    Google Scholar 

  104. Mathey, R.G., And Watstein, D., Effect of Tensile Properties of Reinforcement on the Flexural Characteristics of Beams, Journal, American Concrete Institute, Proc. Vol. 56, No. 12, pp. 1253–1273 (1960).

    Google Scholar 

  105. Bazant, Z.P., and Raftshol, W.J., Effect of Cracking in Drying and Shrinkage Specimens, Cement and Concrete Research, Vol. 12, pp. 209–226 (1982).

    Google Scholar 

  106. Bazant, Z.P., Mathematical Models for Creep and Shrinkage of Concrete, in Creep and Shrinkage in Concrete Structures, ed. by Z.P. Bazant and F.H. Wittmann, J. Wiley & Sons, London, pp. 163–285 (1982).

    Google Scholar 

  107. Bazant, Z.P., and Ohtsubo, H., Stability Conditions for Propagation of a System of Cracks in a Brittle Solid, Mechanics Research Communications, Vol. 4, No. 5, pp. 353–366 (1977).

    MATH  Google Scholar 

  108. Lachenbruch, A.H., Journal of Geophysical Research, Vol. 66, p. 4273 (1961).

    ADS  Google Scholar 

  109. Lister, C.R.B., Geophysical Journal of the Royal Astronomical Society, Vol. 39, pp. 465–509 (1974).

    Google Scholar 

  110. Bazant, Z.P., and Oh, B.H., Model of Weak Planes for Progressive Fracture of Concrete and Rock, Report No. 83–2/448m, Center for Concrete and Geomaterials, Northwestern University, Evanston, I I. (1983).

    Google Scholar 

  111. Bazant, Z.P., and Oh, B.H., Microplane Model for Fracture Analysis of Concrete Structures, Proc., Symp. on the Interaction of Nonnuclear Munitions with Structures, U.S. Air Force Academy, Colorado Springs, May 1983, ed. by C.A. Ross, publ. by McGregor & Werner, Inc., Wash. D.C.

    Google Scholar 

  112. Taylor, G.I., Plastic Strain in Metals, J. Inst. Metals, Vol. 63, pp. 307–324 (1983).

    Google Scholar 

  113. Batdorf, S.B., and Budiansky, B., A Mathematical Theory of Plasticity Based on the Concept of Slip, NACA TN1871 (1949).

    Google Scholar 

  114. Zienkiewics, O.C., and Pande, G.N., Time–Dependent Multi–laminate Model of Rocks–A Numerical Study of Deformation and Failure of Rock Masses, Int. Journal of Numerical and Analytical Methods in Geomechanics, Vol. 1, pp. 219–247 (1977).

    ADS  Google Scholar 

  115. Pande, G.N., and Sharma, K.G., Multi-Laminate Model of Clays — A Numerical Evaluation of the Influence of Rotation of the Principal Stress Axes, Report, Department of Civil Engineering, University College of Swansea, U.K., 1982; see also Proceedings, Symposium on Implementation of Computer Procedures and Stress-Strain Laws in Geo technical Engineering, ed. by C.S. Desai and S.K. Saxena, held in Chicago, Aug. 10, 81, Acorn Press, Durham, N.C., pp. 575–590 (1981).

    Google Scholar 

  116. Pande, G.N., and Xiong, W., An Improved Multi-laminate Model of Jointed Rock Masses, Proceedings, International Symposium on Numerical Models in Geomechanics, ed. by R. Dungar, G.N. Pande, and G.A. Studer, held in Zurich, Sept. 1982, Balkema, Rotterdam, 1982, 218–226.

    Google Scholar 

  117. Bazant, Z.P., and Tsubaki, T., Concrete Reinforcing Net: Optimum Slip-Free Limit Design, Journal of the Structural Division, ASCE Vol. 105, No. ST2, Proc. Paper 14344, Feb. 1979, pp. 327–346; Discussion and Closure, pp. 1375–1383 (1981).

    Google Scholar 

  118. Albrecht, J., and Collatz, L., Zur numerischen Auswertung mehrdimensionaler Integrate, Zeitschrift fur Angewandte Mathematik und Mechanik, Band 38, Heft 1/2, Jan./Feb., pp. 1–15.

    Google Scholar 

  119. Bazant, Z.P., and Oh, B.H., Efficient Numerical Integration on the Surface of a Sphere, Report, Center for Concrete and Geomaterials, Northwestern University, Evanston, 111. (1982).

    Google Scholar 

  120. Bazant, Z.P., and Gambarova, P., Crack Shear in Concrete: Crack Band Microplane Model, Journal of Engineering Mechanics ASCE, Vol. 110 (1984), in press.

    Google Scholar 

  121. Paulay, T., and Loeber, P.J., Shear Transfer by Aggregate Interlock, Am. Concr. Inst. Special Publ. SP42, Detroit, pp. 1–15 (1974).

    Google Scholar 

  122. Reinhardt, H.W., and Walraven, J.E., Crack in Concrete Subject to Shear, Journal of the Structural Division ASCE, Vol. 108, pp. 207–224 (1982).

    Google Scholar 

  123. Walraven, J.C., and Reinhardt, H.W., Theory and Experiments on the Mechanical Behavior of Cracks in Plain and Reinforced Concrete Subjected to Shear Loading, HERON Journal Vol. 26, No. 1A, Dept of Civil Eng. Delft University of Technology, Delft (1981).

    Google Scholar 

  124. Laible, J.P., White, R.N., and Gergely, P., Experimental Investigation of Shear Transfer across Cracks in Concrete Nuclear Containment Vessels, Am. Concrete Inst., Special Publ. SP53, pp. 203–226 (1977).

    Google Scholar 

  125. Mattock, A.H., The Shear Transfer Behavior of Cracked Monolithic Concrete Subject to Cyclical Reversing Shear, REport SM7404, Dept. of Civil Engng., Univ. of Washington, Seattle (1974).

    Google Scholar 

  126. Paulay, T., Park, R., and Phillips, M.H., Horizontal Construction Joints in Cast–in–Place Reinforced Concrete, in Shear in Reinf. Concrete, Vol. 2, Am. Concrete Inst. Special Publ. SP42, Detroit (1974).

    Google Scholar 

  127. Laible, J.P., White, R.N., and Gergely, P., Experimental Information on Shear Transfer Across Cracks in Concrete Nuclear Containment Vessels, Special Publ. SP53, Am. Concr. Inst., pp. 203–226, Detroit 1977.

    Google Scholar 

  128. Baumann, T., Zur Frage der Netzbewehrung von Flachentragwerken, Der Bauin genieur, Vol. 47, No. 10, pp. 367–377 (1971).

    Google Scholar 

Additional Bibliography

  1. Bazant, Z.P., Mathematical Models for Creep and Shrinkage of Concrete, Chapter 7 in Creep and Shrinkage in Concrete Structures, ed. by Z.P. Bazant and F.H. Wittmann, J. Wiley & Sons, London, pp. 163–256.

    Google Scholar 

  2. Bazant, Z.P., and Oh, B.H., Strain Rate Effect in Rapid Triaxial Loading of Concrete, Vol. 108, pp. 764–782 (1982).

    Google Scholar 

  3. Bazant, Z.P., and Oh, B.H., Concrete Fracture via Stress-Strain Relations, Report No. 81-10/665c, Center for Concrete and Geomaterials, Technological Institute, North-western University, Evanston, 111. (1981).

    Google Scholar 

  4. Bazant, Z.P. and Oh, B.H., Deformation of Cracked Net–Reinforced Concrete Walls, Journal of the Structural Engineering ASCE, Vol. 109, No. ST2, pp. 93–108 (1983).

    Google Scholar 

  5. Bhal, N.S., Uber den Einfluss der Balkenhohe auf Schubtragfahigkeit von einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung, Dissertation, Universitat Stuttgart (1968).

    Google Scholar 

  6. Building Code Requirements for Reinforced Concrete ACI-318-77, ACI Committee 318, American Concrete Institute, Detroit, Mich. (1977).

    Google Scholar 

  7. CEB-FIP Model Code for Concrete Structures, Comrnite Eurointernational du Beton, CEB Bulletin No. 124/125-E, Paris (1978).

    Google Scholar 

  8. Cedolin, L., and Bazant, Z.P., Fracture Mechanics of Crack Bands in Concrete, Fracture Mechanic Methods for Ceramics, Rocks and Concrete, ed., S.W. Freiman P. Fuller, Am. Soc. for Testing Materials STP745, pp. 221–236 (1981).

    Google Scholar 

  9. Cedolin, L., and Dei Poli, S., Finite Element Studies of Shear Critical R/C Beams, J. of the Engng. Mech. Div., ASCE, Vol. 103, No. EM3, pp. 395–410 (1979).

    Google Scholar 

  10. Cervenka, V., and Gerstle, K.H., Inelastic Analysis of Reinforced Concrete Panels, Publications, Intern. Assoc. for Bridge and Structural Engng., Zurich, Switzerland, Vol. 31, 1971, pp. 31–45 and Vol. 32, pp. 25–79 (1972).

    Google Scholar 

  11. Christensen, R.M., A Rate–Dependent Criterion for Crack Growth, Intern. J. of Fracture, Vol. 15, No. 1, Feb. 1979, pp. 3–21,; disc. Vol. 16, pp. R229-R232, R233 - R237 (1980).

    Google Scholar 

  12. Chudnovsky, A., On the Law of Fatigue Crack Layer Propagation in Polymers, Polymer Engineering and Science, Vol. 22, No. 15, pp. 922–927 (1982).

    Google Scholar 

  13. Chudnovsky, A., Proceedings of NSF Workshop on Damage, held in General Butler State Park in May 1980, University of Cincinnati.

    Google Scholar 

  14. Crisfield, M.A., Local Instabilities in the Non-linear Analysis of Reinforced Concrete Beams and Slabs, Proc., Institution of Civil Engrs. Part 2, Vol. 73, pp. 135–145 (1982).

    Google Scholar 

  15. Crisfield, M.A., Accelerated Solution Techniques and Concrete Cracking, Comp. Methods in Appl. Mech. and Engng. Vol. 30 (1982).

    Google Scholar 

  16. Carpinteri, A., Notch-Sensitivity and Fracture Testing of Aggregate Materials, Engng, Fracture Mechanics, Vol. 16, No. 14, pp. 467–481 (1982).

    Google Scholar 

  17. Ingraffea, A.R., Numerical Modeling of Fracture Propagation, in Rock Fracture Mechanics, ed. by H.P. Rossmanith, publ. by The International Center for Mechanical Sciences, Udine, Italy (1983).

    Google Scholar 

  18. Isida, J., Elastic Analysis of Cracks and Stress Intensity Factors, Baifukan Publishing Col, Japan (1976).

    Google Scholar 

  19. Kachanov, M., Continuum Model of Medium with Cracks, J. of the Engng. Mech. Div. ASCE, Vol. 106, pp. 1039–1051 (1980).

    Google Scholar 

  20. Kachanov, M.L., A Microcrack Model of Rock Inelasticity, Mechanics of Materials, North Holland, Vol. 1, pp. 19–41 (1982).

    Google Scholar 

  21. Kani, G.N.J., Basic Facts Concerning Shear Failure, Part I and Part II, J. of ACI, Vol. 63, No. 6,pp, 675–692 (1966).

    Google Scholar 

  22. Leonhardt, F., and Walther, R., Beitrage nur Behandlung der Schubprobleme im Stahlbeton bau, Beton–u Stahlbetonban, Vol. 56, No. 12 (1961), Vol. 57, No. 2, 3, 6, 7, 8, (1962), Vol. 58, No. 8, 9 (1963).

    Google Scholar 

  23. Marchertas, A.H., Belytschko, T.B., Comparison of Transient PCRV Model Test Results with Analysis, Trans. 5th Int. Conf. on SMiRT, Paper H8/2, Berlin (1979).

    Google Scholar 

  24. Marchertas, A.H., and Belytschko, T.B., Transient Analysis of a PCRV for LMFBR Primary Containments, Special Issue on Mechanics of Applications to Test Breeder Reactor Safety, Nuclear Technology, Vol. 51, No. 3., pp. 433–442 (1980).

    Google Scholar 

  25. Margolin, L.G., Numerical Simulation of Fracture, Proceedings, INtern. Conf. on Constitutive Relations for Engineering Mechanics, ed. by C. Desai, University of Arizona, Tucson, pp. 567–572 (1983).

    Google Scholar 

  26. Mihashi, H., and Zaitzev, J.W., Statistical Nature of Crack Propagation, Chapter 4 in Report of RILEM Techn. Comm. 50–FMC, to appear

    Google Scholar 

  27. Morley, C.T., Yield Criteria for Elements of Reinforced Concrete Slabs, Introductory Report, Colloquium, Plasticity in Reinforced Concrete, Report of the Working Commission, Inter. Assoc. for Bridge and Struct. Engng., Vol. 8, pp. 35–47 (1979).

    ADS  Google Scholar 

  28. Nilson, A., Nonlinear Analysis of Reinforced Concrete by Finite Element Method, Am. Concrete Institute Journal, Vol. 65 (1968).

    Google Scholar 

  29. Paris, P.C., Fracture Mechanics in the Elastic Plastic Regime, Flaw Growth and Fatigue, ASTM Special Techn. Publ. 631, Am. Soc. for Testing Materials, Philadelphia, pp. 3–27 (1977).

    Google Scholar 

  30. Park, R., and Paulay, T., Reinforced Concrete Structures, J. Wiley & Sons, New York, (1975).

    Google Scholar 

  31. Paulay, T., and Loeber, P.J., Shear Transfer by Aggregate Interlock Shear in Reinforced Concrete, Special Publications SP-42, American Concrete Institute, Detroit, Mich., pp. 1–15 (1974).

    Google Scholar 

  32. Pietruszczak, S., and Mroz, Z., Finite Element Analysis of Deformation of Strain-Softening Materials, Intern. J. for Numerical Methods in Engineering, Vol. 17, pp. 327–334 (1981).

    MATH  Google Scholar 

  33. Rice, J.R., An Examination of the Fracture Mechanics Energy Balance from the Point of View of Continuum Mechanics, Proc. First International Conference on Fracture (held in Sandia) T. Yokobori, et al., eds. Japanese Soc. for Strength and Fracture of Materials, Tokyo, Japan, Vol. 1, pp. 309–340 (1965).

    Google Scholar 

  34. Rice, J.R., Mathematical Analysis in the Mechanics of Fracture, in Fracture an Advance Treatise, H. Liebowitz, ed., Vol. 2, Academic Press, New York, pp. 191–250 (1968).

    Google Scholar 

  35. Rtisch, E.H., Haugh, F.R., and Mayer, M., Schubversuche an Stahlbeton Rechteckbalken mit Gleichmassig verteilter Belastung, Deutscher Ausschuss fur Stahlbeton, Heft 145, W. Ernst & Sohn, West Berlin (1962).

    Google Scholar 

  36. Saouma, V.E., Ingraffea, A.R., and Catalano, D.M., Fracture Thoughness of Concrete-KIC Revisited, J. of the Energy Mech. Div. ASCE, Vol. 108, pp. 1152–1166 (1982).

    Google Scholar 

  37. Seaman, L., Curran, D.R. Shockey, D.A., Computational Models for Ductile and Brittle Fracture, J. of Applied Physica, Vol. 47, No. 11, 1976, pp. 4814–4826 (also L. Seaman, Proceedings, NSF Workshop on Damage and Fracture, Stone Mountain, Nov. 1982, ed. by A. Altun, Georgia Institute of Technology, Atlanta.

    Google Scholar 

  38. Stout, R.B., Deformation and Thermodynamic Response for a Dislocation Model of Brittle Fracture, Engineering Fracture Mechanics, to appear (also Report UCRL–87472, Lawrence Livermore Laboratory, 1982 ).

    Google Scholar 

  39. Stout, R.B., Thigpen, L., and Peterson, L., Modeling the Deformation of Materials Involving Microcracks Kinetics, Report UCRL-85477, Lawrence Livermore National Laboratory, Livermore, Cal., 1981 (to appear in Int. J. of Num. Methods in Geomechanics, 1983).

    Google Scholar 

  40. Stroud, A.H., Approximate Calculation of Multiple Integrals, Prentice Hall, Englewood Cliffs, New Jersey, pp. 296–302 (1971).

    Google Scholar 

  41. Swamy, R,N., and Qureshi, S.A., Strength, Cracking and Deformation Similitude in Reinforced T–Beams under Bending and Shear, Part I and Part II, J. of Am. Concrete Inst., Vol. 68, No. 3, pp. 187–195 (1971).

    Google Scholar 

  42. Taylor, H.P.J., The Shear Strength of Large Beams, J. of the Structural Division ASCE, Vol. 98, pp. 2473–2490 (1972).

    Google Scholar 

  43. Walraven, J.C., The Influence of Depth on the Shear Strength of Lightweight Concrete Beams without Shear Reinforcement,: Stevin Laboratory Report No. 5-78-4, Delft University of Technology (1978).

    Google Scholar 

  44. Watstein, D., and Mathey, R.G., Width of Cracks in Concrete at the Surface of Reinforcing Steel Evaluated by Means of Tensile Bond Specimens, Journal. American Concrete Institute, Proc. Vol. 56, No. 1, pp. 47–56.

    Google Scholar 

  45. Wecharatana, M., and Shah, S.P., Double Torsion Tests for Studying Slow Crack Growth of Portland Cement Mortar, Cement and Concrete Research, Vol, 10, pp. 833–844 (1980).

    Google Scholar 

  46. Wecharatana, M., and Shah, S.P. Slow Crack Growth in Cement Composites, J. of the Structural Division ASCE, Vol. 108, pp. 1400–1413 (1982).

    Google Scholar 

  47. Wittmann, F.H., Mechanics and Mechanisms of Fracture of Concrete, Advances in Fracture Research (Preprints, 5th Intern. Conf. on Fracture, in Cannes, March 1981), Vol. 4, Pergamon Press, Paris, pp. 1467–1487 (1981).

    Google Scholar 

  48. Zaitsev, Y.W., and Wittmann, F.H., Crack Propagation in a Two-Phase Material Such as Concrete, Fracture, 1977 (Proc. 4th Intern. Conf. on Fracture), University of Waterloo, Vol. 3, pp. 1197–1203 (1977).

    Google Scholar 

  49. Zech, B., and Wittmann, F.H., Variability and Mean Value of Strength of Concrete as a Function of Load, Am. Concrete Institute Journal, Vol. 77, No. 5, pp. 358–362 (1980).

    Google Scholar 

  50. Zech, B. and Wittmann, F.H., Influence of Rate of Loading on Strength of Concrete, Manuscript (1981).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Bažant, Z.P. (1985). Mechanics of fracture and progressive cracking in concrete structures. In: Sih, G.C., DiTommaso, A. (eds) Fracture mechanics of concrete: Structural application and numerical calculation. Engineering Application of Fracture Mechanics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6152-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6152-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6154-8

  • Online ISBN: 978-94-009-6152-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics