Skip to main content

Part of the book series: Engineering Application of Fracture Mechanics ((EAFM,volume 3))

Abstract

It is well-known that concrete behavior is highly influenced by cracks at the mortar-aggregate interface and defects in the mortar matrix. These defects or cracks can spread as the load is increased. The means for detecting the initial imperfections are essential for the development of analytical models. Discussed are several of the non-destructive testing techniques for finding the size and location of flaws. Different loading types such as compression, tension and biaxial compression and tension are also known to drastically affect the load transfer characteristics in concrete. Damage by cracking can be analyzed by application of Linear Elastic Fracture Mechanics that utilizes the concept of stress intensity factors. In problems where Mode I and II crack extension prevail simultaneously, the maximum normal stress and strain energy density criterion may be used to determine the direction of crack initiation. A modified version of the maximum stress criterion is presented for the case of an interface crack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robinson, S.R., Methods of Detecting the Formation and Propagation of Microcracks in Concrete, Proceed, of the Int. Conf ‘The structure of concrete’. London, 1965.

    Google Scholar 

  2. Slate, F.O. and Olsefski, S., X-rays for Study of Internal Structure and Microcracking of Concrete, Journ. of American Concrete Institute, Proceed., 60, pp. 575–578 (1974).

    Google Scholar 

  3. Dhir, R.H. and Sangha, M., Development and Propagation of Microcracks in Plain Concrete. MaUriaux et Constructions, 37, pp. 17–23 (1974).

    Article  Google Scholar 

  4. Mamillan, M. and Bouneau, A., Nouvelles applications des mesures de vitesse du son aux materiaux de construction, Annates de I’ITBTP, série EM-178 (April 1980).

    Google Scholar 

  5. Terrien, A. and Bergues, J., Study of Concrete’s Cracking under Multiaxial Stresses. 5th Int. Conf on Fracture, Cannes, (1981).

    Google Scholar 

  6. Mazars, J., Evolution of Microcracks in Concrete: the Formation of Cracks, Annates de I’ITBTP, série Béton — 202, October 1981.

    Google Scholar 

  7. Tognon, G.P., Ursella, P. and Coppetti, G., Bond Strength in Very High Strength Concrete, Int. Congr. on the Chemistry of Cement, Paris, (1980).

    Google Scholar 

  8. Shah, S.P., Chandra, S., Critical Stresses, Volume Change and Microcracking of Concrete, ACI Journal, (Sept. 1968).

    Google Scholar 

  9. Beres, L., Relationship of Deformational Processes and Structure Change in Concrete, Struct., Solid Mech and Eng. Design, Part 2 ( Ed. TE’ENI ), Wiley-Inter science, (1971).

    Google Scholar 

  10. Newman, K., Newman, J.B., Failure Theories and Design Criteria for Plain Concrete, Struct., Solid Mech. and Eng. Design, Part 2 ( Ed. TE’ENI ), Wiley-Interscience (1971).

    Google Scholar 

  11. Di Leo, A., Di Tommaso, A., Merlari, R., Danneggiamento per microfessurazione di malte di cemento e calcestruzzi sottoposti a carichi ripetuti. La Prefabbricazione (Italian Journ.), 11, pp. 577–587 (1979).

    Google Scholar 

  12. Santiago, S.D., Hilsdorf, H.K., Fracture Mechanics of Concrete under Compressive Loads, Cem. Concr. Research, 3, pp. 363–388 (1973).

    Article  Google Scholar 

  13. Mehmel, A., Kern, E., Elastiche und Plastiche Stauchungen von Beton infolge Druckschwell und Standbelastung, Deutsch Ausschuss für Stahlbeton, 153, Berlin (1962).

    Google Scholar 

  14. Cervenka, V., Behaviour of Concrete under Low Cycle Repeated Loadings, AICAP-CEB Symposium, vol. 2, Rome (1979).

    Google Scholar 

  15. Evans, R.H., Marathé, M.S., Microcracking and Stress-Strain Curves for Concrete in Tension, Matériaux et Constructions, 1 (1968).

    Google Scholar 

  16. Heilman, H.G., Hilsdorf, H.H., Finsterwalder, K., Festigkeit und Verformung von Beton unter Zugspannungen,Deutsch. Auschuss für Stahlbeton, 203, Berlin (1969).

    Google Scholar 

  17. Hillerborg, A., A Model for Fracture Analysis,Report TVBM 3005, Lund (Sweden), 1978.

    Google Scholar 

  18. Terrien, M., Emission acoustique et comportemen post critique d’un béton sollicité en traction, Bulletin de Liaison des Ponts et Chaussées, No 105, pp. 65–72 (1980).

    Google Scholar 

  19. Di Leo, A., La prova di trazione diretta del calcestruzzo, Ingegneri, Architetti, Costruttori CINARCOS), Bologna, 408 (1980).

    Google Scholar 

  20. Kupfer, H., Hilsdorf, H.K., Riisch, H., Behaviour of Concrete under Biaxial Stresses, A.C.I. Journal, Proceed., 66 (August 1969).

    Google Scholar 

  21. Erdogen, F., Sih, G.C., On the Crack Extension in Plates under Plane Loading and Transverse Shear, Journ. of Basic Engineering (Dec. 1963).

    Google Scholar 

  22. Sih, G.C., Some Basic Problems in Fracture Mechanics and New Concepts, Eng. Fracture Mechanics, 5, 1973.

    Google Scholar 

  23. Di Tommaso, A., Nobile, L., Viola, E., Diramazione di un crack dominante in un solido a regime deformativo biassiale, III Congr. Na. A.I.M.E.T.A. (Ass. Italiana di Meccanica Teorica e Applicata), Cagliari (Oct. 1976).

    Google Scholar 

  24. Carpinteri, A., Di Tommaso, A., Viola, E., Stato limite di frattura nei materiali fragili, (Modelli Meccanici Teorici), Giornale del Genio Gvile (Italian), fasc. 4–5–6, pp. 201–224 (1978).

    Google Scholar 

  25. Eftis, J., Subramonian, N., Liebowitz, H., Crack Border Stress and Displacement Equations Revisited, Eng. Fracture Mechanics, 9, pp. 189–210 (1977).

    Article  Google Scholar 

  26. Carpinteri, A., Di Tommaso, A., Viola, E., Collinear Stress Effect on the Crack Branching Phenomenon, Matériaux et Constructions, 12, pp. 439–446 (1979).

    Article  Google Scholar 

  27. Viola, E., Piva, A., Biaxial Load Effects on a Crack between Dissimilar Media, Eng. Fracture Mechanics, 13 pp. 143–1 (1980).

    Article  Google Scholar 

  28. Viola, E., Piva, A., Plane Strain Interfacial Fracture Analysis of a Bimaterial Incompressible Body, Eng. Fracture Mechanics, 15, (1981).

    Google Scholar 

  29. Viola, E., Piva, A., Fracture Behaviour by two Cracsk around an Elliptical Rigid Inclusion, Eng. Fracture Mechanics, 15, pp. 303–325 (1981).

    Article  Google Scholar 

  30. Lino, M., Modéle de béton microfissuré, Seminaire, ‘Modele de comportement de béton fissuré’, Ecole Poly technique, Palaiseau (1979).

    Google Scholar 

  31. Bamberger, Y., Cannard, G., Marigo, J., Microfissuration du béton et propagation d’ondes ultrasonnes, Euromech. 115 ( Anisotropic ), Grenoble (1979).

    Google Scholar 

  32. Piva, A., Viola, E., Stress Strain-Response of a Concrete Mathematical Model, Proc. AIMETA (Ass. Italiana di Meccanica Teorica e Applicata), Palermo, Italy (1980).

    Google Scholar 

  33. Zaitev, Y.B., Wittmann, F.H., Simulation of Crack Propagation and Failure of Concrete, Materials and Structures (RILEM Journ.), 83, pp. 357–365 (1981).

    Google Scholar 

  34. Chow, T.H., Shah, H.S., Markov Process Model for Creep of Concrete under Constant Sustained Compressive Stresses, Struct., Solid Mech. and Eng. Design, (Ed. TE’ENI), vol. 1, Wiley-Interscience, London (1971).

    Google Scholar 

  35. Mihashi, H., Izumi, M., A stochastic Theory for Concrete Fracture, Cem. Concr. Research, 7, (1977).

    Google Scholar 

  36. Mihashi, H., Wittmann, F.H., Stochastic Approach to Study the Influence of Rate of Loading on Strength of Concrete, Heron Publications (The Netherlands), Vol. 25, No 3 (1980).

    Google Scholar 

  37. Viola, E., Un approccio stocastico alio studio del danneggiamento del calcestruzzo prodotto dall’azione dei carichi ripetuti, Giornale del Genio Civile (Italian), 1983 (in press).

    Google Scholar 

  38. Janson, J., Hult, J., Fracture Mechanics and Damage Mechanics A Combined Approach, Journ. de Mécanique Appliquée, 1, pp. 69–84 (1977).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

DiTommaso, A. (1984). Evaluation of concrete fracture. In: Carpinteri, A., Ingraffea, A.R. (eds) Fracture mechanics of concrete: Material characterization and testing. Engineering Application of Fracture Mechanics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6149-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6149-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6151-7

  • Online ISBN: 978-94-009-6149-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics