Skip to main content

Microdosimetry of Labelled Cells

  • Chapter
Blood cells in nuclear medicine, part II

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 7))

Abstract

The diagnostic use of radipharmaceuticals is based on the principle of maximizing medical benefits while minimizing patient risk from radiation exposure. To establish a rational basis for designing nuclear medical procedures, modern dosimetric models take into consideration not only obvious factors such as the type and amount of radionuclide administered, the decay characteristic and radiation spectrum of the nuclide, the physical and biological halflives, etc, but also more subtle factors such as the biokinetics of the radiopharmaceutical, the residence time of the radionuclide in various body compartments, and variations in the intrinsic radiosensitivity of different tissues (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watson E.E., A.T. Schlafke-Stelson, J.L. Coffey and R.J. Cloutier (Eds): Third International Radiopharmaceutical Dosimetry Symposium. HHS Publication (FDA) 81–8166, Oak Ridger Tennessee, 1981.

    Google Scholar 

  2. Krisch R.E. and M.R. Zelle: Biological effects of radioactive decay. The role of transmutation effect. Advanc. Radiat. Biol. 3:177–213, 1969.

    CAS  Google Scholar 

  3. Halpern A. and G. Stoecklin: Chemical and biological consequences of beta-decay. Radiat. and Environm. Biophys. 14:167–183, 257–274, 1977.

    Article  CAS  Google Scholar 

  4. Apelgot S. and J.P. Adloff: Transmutation effects of P-32 and P-33 incorporated in DNA. Curr. Top. Radiat. Res. 13:61–95, 1978.

    CAS  Google Scholar 

  5. Marin G. and M.A. Bender: A comparison of mammalian cell killing by incorporated 3-H-thymidine and 3-H-uridine. Int. J. Radiat. Biol. 7:235–244, 1963.

    Article  CAS  Google Scholar 

  6. Burki H.J. and S. Okada: A comparison of killing of cultured mammalian cells induced by decay of incorporated tritiated molecules at -196 deg.C. Biophys. J. 8:445–456, 1968.

    Article  PubMed  CAS  Google Scholar 

  7. Burki H.J., S. Bunker, M. Ritter and J.E. Cleaver: DNA damage from incorporated radioisotopes: Influence of the 3-H location in the cell. Radiat. Res. 62:299–312, 1975.

    Article  PubMed  CAS  Google Scholar 

  8. Hofer K.G., C.R. Harris and J.M. Smith: Radiotoxicity of intracellular 67-Ga, 125–1 and 3-H: Nuclear versus cytoplasmic radiation effects in murine L1210 leukemia. Int. J. Radiat. Biol. 28: 225–241, 1975.

    Article  CAS  Google Scholar 

  9. Warters R.L., K.G. Hofer, C.R. Harris and J.M. Smith: Radionuclide toxicity in cultured mammalian cells: Elucidation of the primary site of radiation damage. Curr. Top. Radiat. Res. Q. 12:389–407, 1977.

    Google Scholar 

  10. Commerford S.L., V.P. Bond, E.P. Cronkite, and U. Reincke: Radiotoxicity of intranuclear 125–1 atoms not bound to DNA. Int. J. Radiat. Biol. 37:347–554, 1980.

    Article  Google Scholar 

  11. Kassis A.I. and S.J. Adelstein: Radiotoxicity of 75-Se and S-35: Theory and application to a cellular model. Radiat. Res. 84:407–425, 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Hofer K.G. and W.L. Hughes: Radiotoxicity of intranuclear tritium, 125-iodine and 131-iodine. Radiat. Res. 47:94–109, 1971.

    Article  PubMed  CAS  Google Scholar 

  13. Feinendegen L.E., H.H. Ertl and V.P. Bond: Biologica toxicity associated with the Auger effect. In: Proceedings of the Symposium on Biophysical Aspects of Radiation Quality (Vienna: IAEA), p. 419, 1971.

    Google Scholar 

  14. Roots R., L.E. Feinendegen and V.P. Bond: Comparative radiotoxicity of 3-H-IUR and 125-IUdR after incorporation into DNA of cultured mammalian cells. In: Proceedings of the Third Symposium on Microdosimetry, edited by H.G. Ebert, p.371. Euratom, 1971.

    Google Scholar 

  15. Burki H.J., R. Roots, L.E. Feinendegen and V.P. Bond: Inactivation of mammalian cells after disintegration of 3-H or 125–1 in cell DNA at -196 deg.C. Int. J. Radiat. Biol. 24:363–375, 1973.

    Article  CAS  Google Scholar 

  16. Bradley E.W., P.C. Chan and S.J. Adelstein: The radiotoxicity of iodine-125 in mammalian cells. I. Effects on the survival curve of radioiodine incorporated into DNA. Radiat. Res. 63:555–563, 1975.

    Article  Google Scholar 

  17. Chan P.C., E. Lisco, H. Lisco and S.J. Adelstein: The radiotoxicity of iodine-125 in mammalian cells. II. A comparative study on cell survival and cytogenetic responses to 125-IUdR, 131-IUdR, and 3-HTdR. Radiat. Res. 67:332–343, 1976.

    Article  PubMed  CAS  Google Scholar 

  18. Hofer K.G., G. Keough and J.M. Smith: Biological toxicity of Auger emitters: Molecular fragmentation versus electron irradiation. Curr. Top. Radiat. Res. Q. 12:335–354, 1977.

    Google Scholar 

  19. Warters R.L. and K.G. Hofer: Radionuclide toxicity in cultured mammalian cells: Elucidation of the primary site for radiation-induced division delay. Radiat. Res. 69:348–358, 1977.

    Article  PubMed  CAS  Google Scholar 

  20. Kassis A.I., S.J. Adelstein, C. Haydock, K.S.R. Haydock, K.D. McElvany and M.J. Welch: Lethality of Auger electrons from the decay of bromine-77 in the DNA of mammalian cells. Radiat. Res. 901:362–373, 1982.

    Article  Google Scholar 

  21. Koch C.J. and H.J. Burki: The oxygen enhancement ratio for reproductive death induced by 3-H or 125–I damage in mammalian cells. Int. J. Radiat. Biol. 28:417–425, 1975.

    Article  CAS  Google Scholar 

  22. Munson R.J., G.J. Neary, B.A. Bridges and R.J. Preston: The sensitivity of Escherichia coli to ionizing particles of different LETS. Int. J. Radiat. Biol. 13:205–224, 1967.

    Article  CAS  Google Scholar 

  23. Berry R.J.: Growing points in mammalian radiobiology and their implications for radiotherapy. Radiol. Clinics N. Amer. 7:281–292, 1969.

    CAS  Google Scholar 

  24. Charlton E.E., J. Booz, J. Fidorra, Th. Smit and L.E. Feinendegen: Microdosimetry of radioactive nuclides incorporated into the DNA of mammalian cells. In: Sixth Symposium on Microdosimetry, edited by J. Booz and H.G. Ebert, p.91. London, Harwood Academic Publishers Ltd, 1978.

    Google Scholar 

  25. Hofer K.G.: Toxicity of radionuclides as a function of subcellular dose distribution. In: Third International Radiopharmaceutical Dosimetry Symposium, edited by E.E. Watson, A.T. Schlafke-Stelson, J.L. Coffey and R.J. Cloutier, p.371. HHS Publication (FDA) 81–8166, 1981.

    Google Scholar 

  26. Carlson T.R. and R.M. White: Formation of fragment ions from CH3 Te-125 and C2H2 Te-125 following nuclear decays of CH3 125–I and C2H2 125–I. J. Chem. Phys. 38:2930–2934, 1963.

    Article  CAS  Google Scholar 

  27. Stoecklin G.: Chemical and biological effects of beta-decay and inner shell ionization of biomolecules: A new approach to radiation biology. In: Proceedings Sixth Int. Congress Radiat. Res., edited by S. Okada, M. Imamura, T. Terasima, and H. Yamaguchi, p.382. Toppan Printing Co., Ltd., 1979.

    Google Scholar 

  28. Andrews G.A. and C.L. Edwards: Tumor scanning with gallium-67. JAMA 233:1100–1103, 1975.

    Article  PubMed  CAS  Google Scholar 

  29. Hayes R.L.: Factors affecting uptake of radioactive agents by tumor and other tissues, In: Tumor Localization with Radioactive Agents, p.29. IAEA-MG 50/14, 1976.

    Google Scholar 

  30. Staab E.V. and W.H. McCartney: Role of gallium-67 in inflammatory disease. Semin. Nucl. Med. 8:219–234, 1978.

    Article  PubMed  CAS  Google Scholar 

  31. Glickson J.D., R.B. Ryel, M.M. Bordenca, K.H. Kim and R.A. Gams: In vitro binding of 67-Ga to L1210 cells. Cancer Res. 33:2706–2713, 1973.

    PubMed  CAS  Google Scholar 

  32. Goldenberg D.M. (Ed.): Radioimmunodetection of Cancer, p.2957. AUICC Workshop, In: Cancer Res. 40, 1980.

    Google Scholar 

  33. Smith R.T.: Tumor-specific immune mechanisms. N.E.J. Med. 278:1207–1214, 1268–1275, 1311–1326, 1968.

    Google Scholar 

  34. Ghose T. and A. Guclu: Cure of mouse lymphoma with radio-iodinated antibody. Eur. J. Cancer 10:787–792, 1974.

    PubMed  CAS  Google Scholar 

  35. Hofer K.G.: Radiation biology and potential therapeutic applications of radionuclides. Bull. Cancer 67:343–353, 1980.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Hofer, K.G. (1984). Microdosimetry of Labelled Cells. In: Fueger, G.F. (eds) Blood cells in nuclear medicine, part II. Developments in Nuclear Medicine, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6030-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6030-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6032-9

  • Online ISBN: 978-94-009-6030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics