Advertisement

Amubulatory Monitoring: Real-Time Analysis Versus Tape Scanning Systems

  • Roger G. Mark
  • Kenneth L. Ripley
Chapter
  • 29 Downloads
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 37)

Abstract

Long term ambulatory monitoring has become an important diagnostic technique, particularly in cardiology. The monitoring of electrocardiographic data has found many important applications, as discussed previously by others in this workshop. The technique is used to evaluate patients with known ventricular ectopic activity who may be at risk for sudden death, to monitor patients after myocardial infarction, to evaluate patients with intermittent symptoms possibly due to cardiac arrhythmias, to document the effectiveness of antiarrhythmic drug therapy, and to check the function of implanted cardiac pacemakers (1–9).

Keywords

Ambulatory Monitoring Program Memory Survival Technology Arrhythmia Detector Ventricular Ectopic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. l.
    Corday, E., Bazika, V., Lang, T., et al. 1965. Detection of phantom arrhythmmias and evanescent electrocardiographic abnormalities: use of prolonged direct electrocardiorecording. JAMA 193:417.PubMedGoogle Scholar
  2. 2.
    Lown, B., Calvert, A., Armington, M., et al. 1975. Monitoring for serious arrhythmias and high risk of sudden death, Circulation, 52:suppl. III, 189–98.Google Scholar
  3. 3.
    Crawford, M., O’Rourke, R., et al. 1974. Comparative effectiveness of exercise testing and Holter monitoring for detecting arrhythmias in patients with previous myocardial infarction, Amer. J. Cardiol. 33:132.CrossRefGoogle Scholar
  4. 4.
    Harrison, D.C., Fitzgerald, J.W. and Winkle, R.A. 1976. Ambulatory electrocardiography for diagnosis and treatment of cardiac arrhythmias. New Engl. J. Med. 294:373.PubMedCrossRefGoogle Scholar
  5. 5.
    Kennedy, H.L. and Caralis, D.G. 1977. Ambulatory electrocardiography, a clinical perspective. Ann. Intern. Med. 87:729.PubMedGoogle Scholar
  6. 6.
    Famularo, M.A. and Kennedy, H.L. 1982. Ambulatory electrocardiography in the assessment of pacemaker function. Am. Heart J. 104:1086–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Vismara, L.A., Vera, Z., Foerster, J.M., et al. 1977. Identification of sudden death risk factors in acute and chronic coronary artery disease. Am. J. Cardiol. 821:39.Google Scholar
  8. 8.
    Michelson, E.L. and Morganroth, J. 1980. Spontaneous variability of complex ventricular arrhythmias detected by long-term electrocardiographic recording. Circulation 61:690.PubMedGoogle Scholar
  9. 9.
    Harrison, D.C., Fitzgerald, J.W. and Winkle, R.A. 1978. Contribution of ambulatory electrocardiographic monitoring to antiarrhythmic management. Am. J. Cardiol. 41:996.PubMedCrossRefGoogle Scholar
  10. 10.
    Mark, R.G., Moody, G.B., Olson, W.H., et al. 1981. Event recorders and future systems. In “Ambulatory Electrocardiographic Recording” (Eds. N.K. Wenger, M.B. Mock, L. Ringqvist). (Yearbook Medical Publishers, Chicago). pp. 113–132.Google Scholar
  11. 11.
    Salerno, D., Hodges, M., Granrud, G., et al. 1983. Inaccuracy of commercial 24-hour ECG analyzers for quantitation of simple and complexventricular arrhythmia. J. Am. Coll. Cardiol. 1(2):597.Google Scholar
  12. 12.
    Personal Communication from Mr. Dan Winterstein, COM Medical Systems, Inc., P.O. Box 222, Tirat Hacarmel 30251, Isreal.Google Scholar
  13. 13.
    Personal Communication from Mr. Michael Zack, Datamedix, Inc., Route One, Sharon, MA 02067, USA.Google Scholar
  14. 14.
    Personal Communication from Mr. Jens Muller, International Medical Corporation, 64 Inverness Drive East, Englewood, CO 80112, USA.Google Scholar
  15. 15.
    Personal Communication from Dr. Peter Balnave, Medical Concepts, Inc., 137 Gaither Drive, Mt. Laurel, NJ 08054, USA.Google Scholar
  16. 16.
    Personal Communication from Mr. Douglas Hoag, Medicomp, Inc., 1250 West NASA Blvd., Melbourne, FL 32901, USA.Google Scholar
  17. 17.
    Personal Communication from Mr. Herb Reinhold, Survival Technology, Inc., 7801 Woodmont Avenue, Bethesda, ND 20814, USA.Google Scholar
  18. 18.
    Mark, R.G., Moody, G.B., Olson, W.H., et al. 1979. Real-time ambulatory arrhythmia analysis with a microcomputer. In “Computers in Cardiology” (IEEE Computer Society, Los Alamitos, CA). pp. 57–62.Google Scholar
  19. 19.
    Arnold, J. 1972. Time-domain filtering of electrocardiograms. S.B. Thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering, Cambridge, Mass., U.S.A.Google Scholar
  20. 20.
    Nolle, F.M. 1972. ARGUS, a clinical computer system for monitoring electrocardiographic rhythms, D.Sc. Dissertation, Washington University, St. Louis, Missouri, U.S.A.Google Scholar
  21. 21.
    Lovelace, D.E., Knoebel, S.B. and Zipes, D.P. 1976. Recognition of ventricular extrasystoles in sedentary vs. ambulatory populations. In “Computers in Cardiology” (IEEE Computer Society, Los Alamitos, CA). pp. 9–12.Google Scholar
  22. 22.
    Moody, G.B. and Mark, R.G. 1982. Development and evaluation of a 2-lead ECG analysis program. In “Computers in Cardiology” (IEEE Computer Society, Los Alamitos, CA). pp. 39–44.Google Scholar
  23. 23.
    Watanabe, K., et al. 1980. Computer analysis of the exercise ECG: a review. Prog. Cardiovasc. Dis. 22:423.PubMedCrossRefGoogle Scholar
  24. 24.
    Rappaport, S., Gillick, L., Moody, G., et al. 1982. QRS morphology classification: quantitative evaluation of different strategies. In “Computers in Cardiology” (IEEE Computer Society, Los Alamitos, CA). pp. 33–38.Google Scholar
  25. 25.
    Ripley, K.L. and Murray, A. 1980. Introduction to automated arrhythmia detection. IEEE Computer Society, Los Alamitos, CA.Google Scholar
  26. 26.
    Thomas, L.J., Clark, K.W., Mead, C.N., et al. 1979. Automated cardiac dysrhythmia analysis. Proc. IEEE, 67:309–324.CrossRefGoogle Scholar
  27. 27.
    Oliver, G.C., Ripley, K.L., Miller, J.P., et al. 1977. A critical review of computer arrhythmia detection. In “Computer Electrocardiography: Current Status and Criterion” (Ed. L. Pordy). (Futura Publishing Co., Mt. Kisco, NY). pp. 319–360.Google Scholar
  28. 28.
    Cox, J.R., Nolle, F.M. and Arthur, R.M. 1972. Digital analysis of the electroencephalogram, the blood pressure wave, and the electrocardiogram. Proc. IEEE, 60:1137–1164.CrossRefGoogle Scholar
  29. 29.
    Ripley, K.L. and Arthur, R.M. 1975. Evaluation and comparison of automatic arrhythmia detectors. In “Computers in Cardiology” (IEEE Computer Society, Los Alamitos, CA). pp. 27–32.Google Scholar
  30. 30.
    Feldman, C.L. 1974. Evaluation of arrhythmia detectors. In “Computers in Cardiology” (IEEE Computer Society, Los Alamitos, CA). pp. 21–27.Google Scholar
  31. 31.
    Cox, J.R., Hermes, R.E. and Ripley, K.L. 1981. Evaluation of performance. In “Ambulatory Electrocardiographic Recording.” (Eds. N.K. Wenger, M.B. Mock, and I. Ringqvist). (Yearbook Medical Publishers, Chicago). pp 183–198.Google Scholar
  32. 32.
    Hermes, R.E. and Oliver, G.C. 1981. Use of the American Heart Association database. In “Ambulatory Electrocardiographic Recording.” (Eds. N.K. Wenger, M.B. Mock, and I. Ringqvist). (Yearbook Medical Publishers, Chicago). pp 165–181.Google Scholar
  33. 33.
    Hermes, R.E., Geselowitz, D.B. and Oliver, G.C. 1980. Development, distribution and use of the American Heart Association database for ventricular arrhythmia detector evaluation. In “Computers in Cardiology” (IEEE Computer Society, Los Alamitos, CA). pp. 263–266.Google Scholar
  34. 34.
    Schluter, P.S., Peterson, S.K., Siegel, L.C., et al. 1978. A database for arrhythmia detector evaluation. Proceedings of the 31st ACEMB.Google Scholar
  35. 35.
    MIT-BIH Arrhythmia Database: Tape directory and format specification. 1980. Biomedical Engineering Center for Clinical Instrumentation, Technical Report No. 010, NET Cambridge, MA 02139.Google Scholar
  36. 36.
    Schluter, P., Mark, R., Moody, G., et al. 1980. Performance measures for arrhythmia detectors. In “Computers in Cardiology” (IEEE Computer Society, Los Alamitos, CA). pp. 267–270.Google Scholar
  37. 37.
    Zeelenberg, C. and Meij, S.H. 1981. Evaluation and optimization of an existing arrhythmia detection system by using an annotated ECG database. In “Computers in Cardiology” (IEEE Computer Society, Los Alamitos, CA). pp. 103–108.Google Scholar
  38. 38.
    Wang, J.Y., Shaya, M.N., Helfenbein, E.D., et al. 1982. The design and evaluation of a real-time arrhythmia monitoring algorithm. In “Computers in Cardiology” (IEEE Computer Society, Los Alamitos, CA). pp. 363–366.Google Scholar
  39. 39.
    Mark, R.G., Schluter, P.S., Moody, G., et al. 1982. An annotated ECG database for evaluating arrhythmia detectors. In “Frontiers of Engineering in Health Care—1982.” Proc. of 4th Annual IEEE EMBS Soc. Conf.Google Scholar
  40. 40.
    Kennedy, H.L., Sprague, M.K., Shriver, K.K., et al. 1982. Real-time analysis Holter ECG — a new approach. Circulation, 66(supp. 11):74.Google Scholar
  41. 41.
    Mead, C.N., Pull, H.R., Clark, K.W., et al. 1982. Expanded frequency-domain ECG waveform processing: Integration into a new version of Argus/2H. In “Computers in Cardiology” (IEEE Computer Society, Los Alamitos, CA). pp. 205–209.Google Scholar
  42. 42.
    Personal communication from Dr. Paul Schluter of Marquette Electronics, Inc., Milwaukee, Wisconsin. Data refer to developmental version of system operating in Spring 1982.Google Scholar
  43. 43.
    Feldman, C.L. 1981. How should Holter monitoring analysis be performed? In “The evaluation of new antiarrhythmia drugs.” (Eds. J. Morganroth and E.N. Moore). (Martinus Nijhoff Publishers, The Hague, The Netherlands).Google Scholar
  44. 44.
    Stein, I.M., Plunkett, J. and Troy, M. 1980. Comparison of techniques for examining long-term ECG recordings. Medical Instrumentation, 14:69–72.PubMedGoogle Scholar
  45. 45.
    Thomas, L.J., Clark, K.W., Mead, C.N., et al. 1981. Supraventricular arrhythmias: strategies for detection. In “Ambulatory Electrocardiographic Recording.” (Eds. N.K. Wenger, M.B. Mock, and I. Ringqvist). (Yearbook Medical Publishers, Chicago), pp. 213–232.Google Scholar
  46. 46.
    Lovelace, D.E. and Knoebel, S.B. 1982. Time series analysis in predicting ventricular arrhythmias. In “Computers in Cardiology” (IEEE Computer Society, Los Alamitos, CA). pp. 45–48.Google Scholar
  47. 47.
    Adam, D.R., Powell, A.O., Gordon, H., et al. 1982. Ventricular fibrillation and fluctuations in the amplitude of the repolarization vector. In “Computers in Cardiology” (IEEE Computer Society, Los Alamitos, CA). pp. 241–244.Google Scholar
  48. 48.
    Akselrod, S., Gordon, D., Ubel, F.A., et al. 1981. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, Vol. 213:220–222.PubMedCrossRefGoogle Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels-Luxembourg 1984

Authors and Affiliations

  • Roger G. Mark
    • 1
  • Kenneth L. Ripley
    • 2
  1. 1.Biomedical Engineering Center for Clinical InstrumentationMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.ThoraxcentrumErasmus UniversityRotterdamThe Netherlands

Personalised recommendations