Advertisement

Parameter Extraction for Automatic Analysis of ECG Traces

  • R. Balzarotti
  • F. Bartoli
  • G. Baselli
  • S. Cerutti
  • D. Liberati
Chapter
  • 29 Downloads
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 37)

Abstract

The present paper aims at introducing original techniques of linear digital filtering (traditional and optimal ones) for the automatic processing of ECG traces. Innovative feature extraction methods are also described in the area of parametric identification (feasible both using stochastic and deterministic signals) and of spectral estimate (Maximum Entropy Spectrum, Pisarenko Harmonic Deconvolution and Prony method). Results are shown in the field of automatic measurements of P, QRS, T waves and of heart rate variability on the basis of the time series constituted by the R-R intervals. The obtained parametrizations are discussed together with interesting applications foreseen in the future by the further development of methodological and technological means towards the implementation of new equipment for diagnosis and patient monitoring.

Keywords

Heart Rate Variability Digital Filter Spectral Estimation Parameter Extraction Amplitude Histogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AHA Committee. 1975. Recommendations for standardization of ledas and of specifications for instruments in ECG and VCG. Circulation, 52, 20–87.Google Scholar
  2. Akselrod, S. et al. 1981. Power spectrum analysis of heartrate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 213, 220–222.PubMedCrossRefGoogle Scholar
  3. Bartoli, F., Cappelletti, T., Cerutti, S. and Crippa, M. 1982a. Effects of digital filtering procedure on the processing of ECG tracings. Proc. World Congr. Med. Phys. and Biom. Engin., Hamburg.Google Scholar
  4. Bartoli, F. and Cerutti, S., 1982b. Identification and filtering programs for the biosignals processing. Proc. World Congr. Med. Phys. and Biom. Engin., Hamburg.Google Scholar
  5. Bartoli, F. and Cerutti, S. 1982c. Methodologies and techniques of digital filtering for the ECG signal processing. Rass. di Bioingegn., 7: 8–34 (in italian).Google Scholar
  6. Bartoli, F., Cerutti, S, and Gatti, E. 1983d. Digital filtering and regression algorithms for an accurate detection of the baseline in ECG signals. Med. Inform. (in press).Google Scholar
  7. Bittanti, S. 1981. Parametric identification, ed. CLUP, Milano (in italian).Google Scholar
  8. Cadzow, J.A. 1982. Spectral Estimation: an overdetermined rational model equation approach. Proc. IEEE, 70: 907–939.CrossRefGoogle Scholar
  9. Cerutti, S., Gatti, E. and Masciadri, L. 1982. An automatic procedure of pre-processing ECG/VCG signals. Int. Journ. Bio-Med. Comp., 13: 329–342.CrossRefGoogle Scholar
  10. Kay, S.M. and Marple, S.L. 1981. Spectrum analysis: a modern perspective. Proc. IEEE, 69: 1380–1419.CrossRefGoogle Scholar
  11. Kitney, R.I. and Rompelman O. 1980. The study of heart rate variability. Clarendon Press, Oxford.Google Scholar
  12. Meyer, C.R. and Keiser H.N. 1977. ECG baseline noise estimation and removal using cubic splines and state-space computation techniques. Comp. Biomed. Res., 10, 459–470.CrossRefGoogle Scholar
  13. Ripley, K.L. and Murrey, A. eds. 1980. Introduction to automated arrhythmia detection. IEEE Computer Soc. Press.Google Scholar
  14. Ruttiman, U.E. and Pipberger, H.V. 1977. The effect of bandwidth limitation on measurements of the vector ECG. Proc. IEEE SCAMC, Washington D.C.Google Scholar
  15. Sayers, B.McA. 1977. Processing and analysis of biological signals. In “Biomedical Computing” (Ed. W.J. Perkins). (Pitman Medical, London).Google Scholar
  16. Wellner, U. and Brodda, K. 1976. Sensitivity of VCG parameters to baseline adjustment procedures. Adv. Cardiol., 16 (Karger, Basel).Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels-Luxembourg 1984

Authors and Affiliations

  • R. Balzarotti
    • 1
  • F. Bartoli
    • 1
  • G. Baselli
    • 1
  • S. Cerutti
    • 1
  • D. Liberati
    • 1
  1. 1.Dipartimento di Elettronica Politecnico di MilanoCNR Centro di Teoria dei SistemiMilanoItaly

Personalised recommendations