Skip to main content

Long Polymer Molecules

  • Chapter
  • 1383 Accesses

Part of the book series: Monographs on Applied Probability and Statistics ((MSAP))

Abstract

According to the Mayer model, the properties of a long-chain polymer molecule are crudely but sufficiently well represented if one supposes that the successive atoms occupy adjacent sites of a regular tetrahedral† lattice. If one treats all such configurations as equally probable, the positions of the atoms in a chain of (n+1) atoms are distributed in exactly the same way, relative to the position of one end, as the sites passed through in n steps of a Pólya walk (random walk) on the same lattice. One may then appeal to the theory of Pólya walks for the various information that one requires; of particular interest is the mean square distance \(\left\langle {r_n^2} \right\rangle\) between the ends of the chain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Hammersley (1957). ‘Percolation processes. II. The connective constant.’ Proc. Camb. phil. Soc. 53, 642–645.

    Article  Google Scholar 

  2. J. M. Hammersley and D. J. A. Welsh (1962). ‘Further results on the rate of convergence to the connective constant of the hypercubical lattice.’ Oxford Quart. J. Math. (2) 13,108-110.

    Article  Google Scholar 

  3. F. T. Wall (1953). ‘Mean dimensions of rubber-like polymer molecules.’ J. Chem. Phys. 21, 1914–1919.

    Article  Google Scholar 

  4. E.W.Montroll (1950).‘Markov chains and excluded volume effect in polymer chains.’ J. Chem. Phys. 18, 734–743.

    Article  Google Scholar 

  5. F. T. Wall and L. A. Hiller (1954). ‘Properties of macromolecules in solution.’ Ann. Rev. Phys. Chem. 5, 267–290.

    Article  Google Scholar 

  6. J. J. Hermans (1957). ‘High polymers in solution.’ Ann. Rev. Phys. Chem. 8, 179–198.

    Article  Google Scholar 

  7. E. F. Casassa (1960). ‘Polymer solutions.’ Ann. Rev. Phys. Chem. 11, 477–500.

    Article  Google Scholar 

  8. R.S.Lehman and G. H. Weiss (1958). ‘A study of the restricted random walk.’ J. Soc. Indust. Appl. Math. 6, 257–278.

    Article  Google Scholar 

  9. J. M. Hammersley (1963). ‘Long-chain polymers and self avoiding random walks.’ Sankhya, (A) 25, 29–38, 269–272.

    Google Scholar 

  10. M. A. D. Fluendy and E. B. Smith (1962). ‘The application of Monte Carlo methods to physicochemical problems.’ Quart. Rev. London Chem. Soc. 16, 241–266.

    Article  Google Scholar 

  11. G. W. King (1951). ‘Stochastic methods in statistical mechanics.’ Nat. Bur. Stand. Appl. Math. Ser. 12, 12–18.

    Google Scholar 

  12. F. T. Wall, L. A. Hiller, D. J. Wheeler and W. F. Atchison (1954 and 1955 ). ‘Statistical computation of mean dimensions of macro- molecules. I–III’ J. Chem. Phys. 22, 1036–1041; 23, 913–921, 2314–2321.

    Article  Google Scholar 

  13. F. T. Wall, R. J. Rubin and L. M. Isaacson (1957). ‘Improved statistical method for computing mean dimensions of polymer molecules.’ J. Chem. Phys. 27, 186–188.

    Article  Google Scholar 

  14. J. M. Hammersley and K. W. Morton (see chapter 8, reference 8).

    Google Scholar 

  15. M. N. Rosenbluth and A. W. Rosenbluth (1955). ‘Monte Carlo calculation of the average extension of molecular chains.’ J. Chem. Phys. 23, 356–359.

    Article  Google Scholar 

  16. P. J. Marcer (1960). Further investigations of the mean dimensions of non-intersecting chains on simple lattices. Thesis, Oxford.

    Google Scholar 

  17. F. T. Wall and J. J. Erpenbeck (1959). ‘New method for the statistical computation of polymer dimensions.’ J. Chem. Phys. 30, 634–637.

    Article  Google Scholar 

  18. F. T. Wall and J. J. Erpenbeck (1959). ‘Statistical computation of radii of gyration and mean internal dimensions of polymer molecules.’ J. Chem. Phys. 30, 637–640.

    Article  Google Scholar 

  19. F. T. Wall and J. Mazur (1961). ‘Statistical thermodynamics of coiling–type polymers.’ Ann. New York Acad. Sci. 89, 608–619.

    Article  Google Scholar 

  20. F. T. Wall, S. Windwer and P. J. Gans (1962). ‘Monte Carlo procedures for generation of non-intersecting chains.’ J. Chem. Phys. 37, 1461–1465.

    Article  Google Scholar 

  21. F. T. Wall, S. Windwer and p. J. Gans (1963).’ Monte Carlo methods applied to configurations of flexible polymer molecules.’ Methods in Computational Physics, 1, 217–243.

    Google Scholar 

  22. M. A. D. Fluendy (1962). The kinetics of intramolecular reactions in solution. Thesis, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1964 J. M. Hammersley and D. C. Handscomb

About this chapter

Cite this chapter

Hammersley, J.M., Handscomb, D.C. (1964). Long Polymer Molecules. In: Monte Carlo Methods. Monographs on Applied Probability and Statistics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5819-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5819-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-5821-0

  • Online ISBN: 978-94-009-5819-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics