Skip to main content

Brain: Intracellular and Extracellular Purinergic Receptor-systems

  • Chapter
Purinergic Receptors

Abstract

The activities of the brain are carried out with the help of many forms of communication including chemical messengers, both intracellular and intercellular. Some forms of communication receive specific elaboration in the brain, especially the electrically-based forms involving cell polarization and nerve impulses. Others are common to a wide range of living organisms, and concern the adjustment of material intake, and turnover or translocation, to functional performance. In each of these categories of communication purine derivatives are found to have their specific points of action, and it is these which are appraised in the account which follows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ad:

adenine

Ads:

adenosine

AMP:

adenosine 5′-phosphate

ADP:

adenosine 5′-pyrophosphate

ATP:

adenosine 5′-triphosphate

ATPase:

adenosine triphosphatase

cAMP or cyclic AMP:

adenosine 3′: 5′-phosphate

cGMP or cyclic GMP:

guanosine 3′: 5′-phosphate

cIMP or cyclic IMP:

inosine 3′: 5′-phosphate

Gu:

guanine

Gus:

guanosine

GMP:

guanosine 5′-phosphate

Hx:

hypoxanthine

In:

inosine

IMP:

inosine 5′-phosphate

N* :

nicotinamide

NAD:

nicotinamide adenine dinucleotide

NMN:

nicotinamide mononucleotide

pr:

protein

Xa:

xanthine

References

  • Arch, J.R.S. and Newsholme, E.A. (1978), The control of metabolism and the hormonal role of adenosine. Essays in Biochemistry, 14, 82–123.

    Google Scholar 

  • Arnstein, H.R. (1975), Synthesis of Amino Acids and Proteins. Butterworths, London.

    Google Scholar 

  • Barden, N. and Labrie, F. (1973), Cyclic AMP-dependent phosphorylation of ribosomal proteins from bovine anterior pituitary gland. Biochemistry, 12, 3096–3012.

    Google Scholar 

  • Berne, R.M., Rubio, R. and Curnish, R.R. (1974), Release of adenosine from ischemic brain. Circulation Res., 35, 262–271.

    Google Scholar 

  • Blomberg, F., Cohen, R.S. and Siekevitz, P. (1977), Structure of postsynaptic densities isolated from dog cerebral cortex. J. cell Biol., 74, 204–225.

    Google Scholar 

  • Brown, I.R. (1977), Analysis of gene activity in the mammalian brain. In: Mechanisms, Regulation and Special Functions of Protein Synthesis in the Brain (Roberts, S., ed), pp. 29–46, Elsevier North Holland, Amsterdam.

    Google Scholar 

  • Burnstock, G. (1972), Purinergic nerves. Pharmacol. Rev., 24, 509–581.

    Google Scholar 

  • Burnstock, G. (1975), Purinergic transmission. Handbook of Psychopharmacology, 5, 131–194.

    Google Scholar 

  • Chasin, M., Mamrak, F. and Samaniego, S.G. (1974), Preparation and properties of a cell-free, hormonally-responsive adenylate cyclase from guinea-pig brain. J. Neurochem., 22, 1031–1038.

    Google Scholar 

  • Clement-Cormier, Y.C., Parrish, R.G., Petzold, G.L., Kebabian, J.W. and Greengard, P. (1975), Characterization of a dopamine-sensitive adenylate cyclase in the rat caudate nucleus. J. Neurochem., 25, 143–149.

    Google Scholar 

  • Cohen, P. (1979), The hormonal control of glycogen metabolism in mammalian muscle by multivalent phosphorylation. Biochem. Soc. Trans., 7, 459–480.

    Google Scholar 

  • Corbin, J.D., Keely, S.L. and Park, C.R. (1975). Distribution and dissociation of cyclic adenosine 3′: 5′-monophosphate-dependent protein kinases in adipose, cardiac and other tissues. J. biol. Chem., 250, 218–225.

    Google Scholar 

  • Creese, I., Usdin, T.B. and Snyder, S.H. (1979), Dopamine receptor binding regulated by guanine nucleotides. Mol. Pharmacol., 16, 69–76.

    Google Scholar 

  • Cuatrecasas, P. and Greaves, M.F. (1976), Preface. In: Receptors and Recognition, Series A, Vol. 1 (Cuatrecasas, P. and Greaves, M.F. eds.), pp. vii–viii, Chapman and Hall, London.

    Google Scholar 

  • Daly, J. (1977), Cyclic Nucleotides in the Nervous System, Plenum, New York.

    Google Scholar 

  • Deuticke, B., Gerlach, E. and Dierkesman, R. (1966), Abbau freier Nucleotide in Herz, Skeletmuskel, Gehirn und Leber der Ratte bei Sauerstoffmangel Pflügers Arch. Gesamte Phyol. Meichen Teren, 292, 239–254.

    Google Scholar 

  • Dravid, A.R., Pete, N. and Mandel, P. (1971), An enzyme system in rat brain nuclei incorporating AMP into polyadenylate. J. Neurochem., 18, 299–306.

    Google Scholar 

  • Dunkley, P.R., Holmes, H. and Rodnight, R. (1977), Phosphorylation of synapticmembrane proteins from ox cerebral cortex in vitro. Biochem. J., 163, 369–378.

    Google Scholar 

  • Dunn, A.J. (1976), The chemistry of learning and the formation of memory. In: Molecular and Functional Neurobiology, (Gispen, W.H., ed.), pp. 347–387, Elsevier North Holland, Amsterdam.

    Google Scholar 

  • Edstrom, J.P. and Phillis, J.W. (1976), The effects of AMP on the potential of rat cerebral cortical neurons. Can. J. Physiol. Pharmacol., 54, 787–790.

    Google Scholar 

  • Essman, W.B. and Nakajima, S. (1973), In: Current Biochemical Approaches to Learning and Memory, pp. 1–27 and 133–145, Spectrum, New York.

    Google Scholar 

  • Frick, G.P. and Lowenstein, J. (1978), Vectorial production of adenosine by 5′-nucleotidase in the perfused rat heart. J. biol. Chem., 253, 1240–1245.

    Google Scholar 

  • Gill, G.N. and Kanstein, C.B. (1975), Guanosine 3′, 5′-monophosphate receptor protein: separation from adenosine 3′, 5′-receptor protein. Biochem. biophys. Res. Comm., 63, 1113–1122.

    Google Scholar 

  • Glazer, R.I. and Kuo, J.F. (1977), Inhibitory effects of cordycepin on cyclic nucleotide-dependent and independent protein kinases. Biochem. Pharmacol., 26, 1287–1290.

    Google Scholar 

  • Goldberg, N.D., Lust, W.D., O’Dea, R.F. Wei, S. and O’Toole, A.G. (1970), A role of cyclic nucleotides in brain metabolism. Adv. Biochem. Psychopharmacol., 3, 67–87.

    Google Scholar 

  • Gozes, I. and Littauer, U.Z. (1979), The α subunit of tubulin is preferentially associated with brain presynaptic membrane. FEBS Letters, 99, 86–90.

    Google Scholar 

  • Greaves, M.F. (1976), Cell surface receptors. In: Receptors and Recognition, Series A, Vol. 1, (Cuatrecasas, P. and Greaves, M.F., eds.), pp. 2–32, Chapman and Hall, London.

    Google Scholar 

  • Greengard, P. and Kuo, J.F. (1970), On the mechanism of action of cyclic AMP. Adv. Biochem. Psychopharmacol., 3, 287–306.

    Google Scholar 

  • Harvey, J.A. Scholefield, C.N., Graham, L.T. and Aprison, M.H. (1975), Putative transmitters in denervated olfactory cortex. J. Neurochem., 24, 445–449.

    Google Scholar 

  • HaulicÇŽ, I., Abaki, L., BrÇŽnisteanu, D. and Topoliceanu, F. (1973), Preliminary data on the possible hypnogenic role of adenosine. J. Neurochem., 21, 1019–1020.

    Google Scholar 

  • Hegstrand, L.R., Kanof, P.D. and Greengard, P. (1976), Histamine-sensitive adenylate cyclase in mammalian brain. Nature, 260, 163–164.

    Google Scholar 

  • Hertz, L. (1978), Kinetics of adenosine uptake into astrocytes. J. Neurochem., 31, 55–62.

    Google Scholar 

  • Hofmann, F. and Sold, G. (1972), A protein-kinase activity from rat cerebellum stimulated by guanosine 3′: 5′-monophosphate. Biochem. biophys. Res., Comm., 49, 1100–1107.

    Google Scholar 

  • Holmes, H., Rodnight, R. and Kapoor, R. (1977), Effects of electroshock and drugs administered in vivo on protein-kinase activity in rat brain. Pharmacol. biochem. Behavior, 6, 415–419.

    Google Scholar 

  • Hoppe, J., Freist, W., Marutzky, R. and Shaltiel, S. (1978), Mapping the ATP-binding site in the catalytic subunit of adenosine 3′: 5′-monophosphate dependent protein kinase. Eur. J. Biochem., 90, 427–432.

    Google Scholar 

  • Huang, M. and Daly, J.W. (1974), Adenosine-elicited accumulation of cyclic AMP in brain slices; potentiation by agents which inhibit uptake of adenosine. Life Sci., 14, 489–503.

    Google Scholar 

  • Huang, M., Gruenstein, E. and Daly, J.W. (1973), Depolarization-evoked accumulation of cyclic AMP in brain slices: inhibition by exogenous adenosine deaminase. Biochim. biophys. Acta, 329, 147–151.

    Google Scholar 

  • von Hungern, K. and Roberts, S. (1974), Neurotransmitter-sensitive adenylate cyclase systems in the brain. Rev. Neuroscience, 1, 231–281.

    Google Scholar 

  • Jacobs, M. (1975), Tubulin—nucleotide reactions and their role in microtubule assembly and dissociation. Ann. N. Y. Acad. Sci., 253, 562–572.

    Google Scholar 

  • Kakiuchi, S., Rall, T.W. and McIlwain, H. (1969), The effect of electrical stimulation on the accumulation of adenosine 3′, 5′-phosphate in isolated cerebral tissue. J. Neurochem., 16, 485–491.

    Google Scholar 

  • Kelly, P.T., Cotman, C.W. and Largen, M. (1979), Cyclic AMP-stimulated protein kinases at brain synaptic junctions. J. biol. Chem., 254, 1564–1575.

    Google Scholar 

  • Kostopoulos, G.K., Limacher, J.J. and Phillis, J.W. (1975), Action of various adenine derivatives on cerebellar Purkinje cells. Brain Res., 88, 162–165.

    Google Scholar 

  • Kuo, J.F., Shoji, M. and Kuo, W.N. (1978), Molecular and Physiopathologic aspects of mammalian cyclic GMP-dependent protein kinase. Ann. Rev. Pharmacol. Toxicol., 18, 341–355.

    Google Scholar 

  • Kuroda, Y. (1978), Physiological roles of adenosine derivatives which are released during neurotransmission in mammalian brain. J. Physiol., Paris, 74, 463–470.

    Google Scholar 

  • Kuroda, Y. and McIlwain, H. (1973), Subcellular localization of 14C-adenine derivatives newly-formed in cerebral tissues and the effects of electrical excitation. J. Neurochem., 21, 889–900.

    Google Scholar 

  • Kuroda, Y. and McIlwain, H. (1974), Uptake and release of 14C-adenine derivatives at beds of mammalian cortical synaptosomes in a superfusion system. J. Neurochem., 22, 691–699.

    Google Scholar 

  • Kuroda, Y., Saito, M. and Kobayashi, K. (1976), Concomitant changes in cyclic AMP levels and postsynaptic potentials of olfactory cortex slices induced by adenosine derivatives. Brain Res., 109, 196–201.

    Google Scholar 

  • Lagnado, J., Tan, L.P. and Reddington, M. (1975), The in situ phosphorylation of microtubular protein in brain cortex slices and related studies on the phosphorylation of isolated brain tubulin preparations. Ann. N. Y. Acad. Sci., 253, 577–597.

    Google Scholar 

  • Lehninger, A.L. (1975), Biochemistry, Worth Publishers, New York.

    Google Scholar 

  • Levitzki, A. (1978), The mode of coupling of adenylate cyclase to hormone receptors and its modulation by GTP. Biochem. Pharmacol., 27, 2083–2088.

    Google Scholar 

  • Libet, B., Kobayashi, H. and Tanaka, T. (1975). Synaptic coupling into the production and storage of a neuronal memory trace. Nature, 258, 155–157.

    Google Scholar 

  • Lincoln, T.M. and Corbin, J.D. (1977), Adenosine 3′: 5′-monophosphate dependent and guanosine 3′:′-monophosphate dependent protein kinases: possible homologous proteins. Proc. natn. Acad. Sci. U.S.A., 74, 3239–3243.

    Google Scholar 

  • Lincoln, T.M., Hall, C.L., Park, C.R. and Corbin, J.D. (1976), Guanosine 3′: 5′-cyclic monophosphate binding proteins in rat tissues. Proc. natn. Acad. Sci. U.S.A., 73, 2559–2563.

    Google Scholar 

  • Lodish, H.F. (1976), Tranlational control of protein synthesis. Ann. Rev. Biochem., 45, 39–72.

    Google Scholar 

  • Malbon, C.C., Hert, R.S. and Fain, J.N. (1978), Characterization of 3H-adenosine binding to fat cell membranes. J. biol. Chem., 253, 3114–3122.

    Google Scholar 

  • McIlwain, H. (1949), Significance of the enzymic degradation of cozymase in living organisms. Nature, 163, 641.

    Google Scholar 

  • McIlwain, H. (1950), Properties of preparations from the central nervous system which degrade coenzymes I and II; their connection with carbohydrate metabolism. Biochem. J., 46, 612–619.

    Google Scholar 

  • McIlwain, H. (1952), Phosphates and nucelotides of the central nervous system. Biochem. Soc. Symposia, 8, 27–43.

    Google Scholar 

  • McIlwain, H. (1971), Cyclic AMP and tissues of the brain. In: Effects of Drugs on Cellular Control Mechanisms, (Rabin, B.R. and Freedman, R.B., eds.), pp. 281–302, Macmillan, London.

    Google Scholar 

  • McIlwain, H. (1972a), Regulatory significance of the release and action of adenine derivatives in cerebral systems. Biochem. Soc. Sympos., 36, 69–85.

    Google Scholar 

  • McIlwain, H. (1972b), Electrical stimulation of specified subsystems of the mammalian brain, as isolated tissue preparations. In: Experimental Models of Epilepsy, (Purpura, D.P. et al., eds.), pp. 269–289, Raven, New York.

    Google Scholar 

  • McIlwain, H. (1974), Adenosine 3′: 5′-cyclic monophosphate and its precursors in the brain: a cyclase-containing adenine-uptake region. Biochem. Soc. Trans., 2, 379–382.

    Google Scholar 

  • McIlwain, H. (1976a), Transport of adenine derivatives in tissues of the brain. In: Transport Phenomena in the Nervous System, (Levi, G., Battistin, L. and Lajtha, A., eds.), pp. 253–264, Plenum, New York.

    Google Scholar 

  • McIlwain, H. (1976b), Translocation of neural modulators: a second category of nerve-signal. Neurochem. Res., 1, 351–368.

    Google Scholar 

  • McIlwain, H. (1978), Synaptic mediators and the structuring of cerebral activity. Prog. Neurobiol., 11, 189–203.

    Google Scholar 

  • McIlwain, H. (1979a), Adenosine and its mononucleotides as regulatory and adaptive signals in the brain. In: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, (Baer, H.P. and Drummond, G.I., eds.), pp. 361–367, Raven, New York.

    Google Scholar 

  • McIlwain, H. (1979b), Intracellular synaptic mediators and the endogenous simulation of neural input to the brain. In: Brain Mechanisms in Memory and Learning, (Brazier, M.A.B., ed.), pp. 71–78, Raven, New York.

    Google Scholar 

  • McIlwain, H., Thomas, J. and Bell, J.L. (1956), The composition of isolated cerebral tissues: ascorbic acid and cozymase. Biochem. J., 64, 332–335.

    Google Scholar 

  • Maeno, H., Reyes, P.L., Veda, T., Rudolph, S.A. and Greengard, P. (1974), Autophosphorylation of adenosine 3′: 5′-monophosphate-dependent protein kinase from bovine brain. Arch. Biochem. Biophys., 164, 551–559.

    Google Scholar 

  • Malkinson, A.M., Gharrett, A.J. and Hogy, L. (1978), Microheterogeneity of adenosine cyclic monophosphate-dependent protein kinases from mouse brain and heart. Biochem. J., 175, 367–375.

    Google Scholar 

  • Marley, E. and Nistico, G. (1972), Effects of catecholamines and of adenosine derivatives given into the brain of fowls. Br. J. Pharmacol., 46, 619–636.

    Google Scholar 

  • Miyamoto, E., Kuo, J.F. and Greengard, P. (1969), Cyclic nucleotide dependent protein kinases. J. biol. Chem., 244, 6395–6402.

    Google Scholar 

  • Newman, M.E. and McIlwain, H. (1977), Adenosine as a constituent of the brain and of isolated cerebral tissues, and its relationship to the generation of adenosine 3′: 5′-cyclic monophosphate. Biochem. J., 164, 131–137.

    Google Scholar 

  • Newman, M. and McIlwain, H. (1978), Cellular site and state of combination of adenosine 3′: 5′-cyclic monophosphate persisting after excitation of cerebral tissues. Biochem. J., 170, 73–79.

    Google Scholar 

  • Newman, M.E., de Lucia, R., Patel, J. and McIlwain, H. (1980a), Adenosine-binding to cerebral preparations in interpretation of adenosine-activation of cyclic AMP formation. Biochem. Soc. Trans., 8, 141–142.

    Google Scholar 

  • Newman, M.E., Patel, J. and McIlwain, H. (1980b), Protein-bound cyclic AMP and histone kinase activities in cerebral cortical preparations. Submitted for publication.

    Google Scholar 

  • Ochs, S. (1974), Systems of material transport in nerve fibres (axoplasmic transport) related to nerve function and trophic control. Ann. N. Y. Acad. Sci., 228, 202–223.

    Google Scholar 

  • O’Dea, R.F., Haddox, M.K. and Goldberg, N.D. (1971), Interaction of phosphodiesterase of free and kinase-complexed cyclic adenosine 3′: 5′-monophosphate. J. biol. Chem., 246, 6183–6190.

    Google Scholar 

  • Phillis, J.W. (1977), The role of cyclic nucleotides in the CNS. Can. J. Neurol. Sci., 4, 151–195.

    Google Scholar 

  • Phillis, J.W. and Edstrom, J.P. (1976), Effects of adenosine analogs on rat cerebral cortical neurons. Life Sci., 19, 1041–1054.

    Google Scholar 

  • Phillis, J.W. and Kostopoulos, G.K. (1975), Adenosine as a putative transmitter in the cerebral cortex. Studies with potentiators and antagonists. Life Sci., 17, 1085–1094.

    Google Scholar 

  • Phillis, J.W., Kostopoulos, G.K. and Limacher, J.J. (1974), Depression of corticospinal cells by various purines and pyrimidines. Can. J. Physiol. Pharmacol., 52, 1226–1229.

    Google Scholar 

  • Premont, J., Perez, M. and Bockaert, J. (1977), Adenosine-sensitive adenylate cyclase in rat striatal homogenates and its relationship to dopamine and Ca2+-sensitive adenylate cyclases. Mol. Pharmacol., 13, 662–670.

    Google Scholar 

  • Pull, I. and McIlwain, H. (1972a), Adenine derivatives as neurohumoral agents in the brain. The quantities liberated on excitation of superfused cerebral tissues. Biochem. J., 130, 975–981.

    Google Scholar 

  • Pull, I. and McIlwain, H. (1972b), Metabolism of 14C-adenine and derivatives by cerebral tissues, superfused and electrically stimulated. Biochem. J., 126, 965–973.

    Google Scholar 

  • Pull, I. and McIlwain, H. (1973), Output of 14C-adenine nucleotides and their derivatives from cerebral tissues. Biochem. J., 136, 893–901.

    Google Scholar 

  • Pull, I. and McIlwain, H. (1974), Rat cerebral cortex adenosine deaminase activity and its subcellular distribution. Biochem. J., 144, 37–41.

    Google Scholar 

  • Pull, I. and McIlwain, H. (1975), Actions of neurohumoral agents and cerebral metabolites on output of adenine derivatives from superfused tissues of the brain. J. Neurochem., 24, 695–700.

    Google Scholar 

  • Pull, I. and McIlwain, H. (1977), Adenine mononucleotides and their metabolites liberated from and applied to isolated tissues of the mammalian brain. Neurochem. Res., 2, 203–216.

    Google Scholar 

  • Rall, T.W. (1979), Regulation of cyclic adenosine monophosphate accumulation in brain tissue. In: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides (Baer, H.P. and Drummond, G.I., eds.), pp. 217–227, Raven, New York.

    Google Scholar 

  • Rappaport, L., Letterrier, J.F. and Nunez, J. (1975), Protein kinase activity, in vitro phosphorylation and polymerization of purified tubulin. Ann. N. Y. Acad. Sci., 253, 611–629.

    Google Scholar 

  • Reddington, M., Rodnight, R. and Williams, M. (1973), Turnover of protein-bound serine phosphate in respiring slices of guinea-pig cerebral cortex. Biochem. J., 132, 475–485.

    Google Scholar 

  • Ribiero, J.A., Sá-Almeida, A.M. and Namorado, J.M. (1979), Adenosine and adenosine triphosphate decrease 45Ca uptake by synaptosomes stimulated by potassium. Biochem. Pharmacol., 28, 1297–1300.

    Google Scholar 

  • Robison, G.A., Butcher, R.W. and Sutherland, E.W. (1967), Adenyl cyclase as an adrenergic receptor. Ann. N.Y. Acad. Sci., 139, 703–723.

    Google Scholar 

  • Robison, G.A., Butcher, R.W. and Sutherland, E.W. (1971), Cyclic AMP., Academic Press, New York.

    Google Scholar 

  • Rodnight, R. (1979), Cyclic nucleotides as second messengers in synaptic transmission. In: Int. Rev. Biochem., (Tipton, K.F., ed.), Vol. 26, pp. 1–80, University Press, Baltimore.

    Google Scholar 

  • Rouot, B.M., U’Prichard, D.C. and Snyder, S.H. (1980), Multiple α 2-noradrenergic receptor sites in rat brain: selective regulation of high-affinity 3H-clondine binding by guanine nucleotides and divalent cations. J. Neurochem., 34, 374–384.

    Google Scholar 

  • Sattin, A. and Rall, T.W. (1970), The effect of adenosine and adenine nucleotides on the cyclic adenosine 3′: 5′-phosphate content of guinea-pig cerebral cortex slices. Mol. Pharmacol., 6, 13–23.

    Google Scholar 

  • Sattin, A., Rall, T.W. and Zanella, J. (1975), Regulation of cyclic adenosine 3′: 5′-monophosphate levels in guinea-pig cerebral cortex by interaction of α-adrenergic and adenosine receptor activity. J. Pharm. exp. Ther., 192, 22–32.

    Google Scholar 

  • Schubert, P. and Kreutzberg, G.W. (1975), 3H-adenosine, a tracer for neural connectivity. Brain Res., 76, 526–538.

    Google Scholar 

  • Schultz, J. (1974), Adenosine 3′: 5′-monophosphate in guinea-pig cerebral cortical slices: effect of benzodiazepines. J. Neurochem., 22, 685–690.

    Google Scholar 

  • Schumm, D.E. Webb, T.E. (1978), Effect of adenosine 3′: 5′-monophosphate and guanosine 3′: 5′-monophosphate on RNA release from isolated nuclei. J. biol. Chem., 253, 1813–1817.

    Google Scholar 

  • Shimizu, H. (1979), Biochemical characterization of adenosine receptors in the brain. In: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, (Baer, H.P. and Drummond, G.I., eds.), pp. 243–248, Raven, New York.

    Google Scholar 

  • Shimizu, H., Tanaka, S. and Kodama, T. (1972), Adenosine kinase of mammalian brain: partial purification and its role for the uptake of adenosine. J. Neurochem., 19, 687–698.

    Google Scholar 

  • Sieghart, W., Forn, J. and Greengard, P. (1979), Calcium and cyclic AMP regulate the phosphorylation of the same two membrane-associated proteins. Proc. natn. Acad. Sci. U.S.A., 76, 2475–2480.

    Google Scholar 

  • Siggins, G.R., Hoffer, B.J. and Bloom, F.E. (1969), Cyclic adenosine monophosphate: possible mediator for norepinephrine effects on cellular Purkinje cells. Science, 57, 1018–1020.

    Google Scholar 

  • Skolnick, P., Nimitkitpaisan, Y., Stalvey, L. and Daly, J.W. (1978), Inhibition of brain adenosine deaminase by 2′-deoxycoformycin and erythro-9-(2-hydroxy-3-nonyl) adenine. J. Neurochem., 30, 1579–1582.

    Google Scholar 

  • Skolnick, P., Syapin, P.J., Paugh, B.A., Moncada, V., Marangos, P.J. and Paul, S.M. (1979), Inosine, an endogenous ligand of brain benzodiazepine receptor, antagonizes pentamethylene tetrazole seizures. Proc. natn. Acad. Sci., U.S.A., 76, 1515–1519.

    Google Scholar 

  • Sold, G. and Hofman, F. (1974), Evidence for a guanosine 3′: 5′-monophosphate binding protein from rat cerebellum. Eur. J. Biochem., 44, 143–149.

    Google Scholar 

  • Stockton, J. and Turner, A.J. (1979), Purification of brain adenylate cyclase by hydrophobic chromatography. Biochem. Soc. Trans., 7, 425–427.

    Google Scholar 

  • Stone, T.W. and Taylor, D.A. (1977), Microiontophoretic studies of the effects of cyclic nucleotides on excitability of neurons in the rat cerebral cortex. J. Physiol., 266, 523–543.

    Google Scholar 

  • Stone, T.W. and Taylor, D.A. (1978), Interactions between guanine derivatives and norepinephrine on neurons of the mammalian cerebral cortex. Brain Res., 155, 187–191.

    Google Scholar 

  • Sulakhe, P.V., Leung, N.L., Arbus, A.T., Sulakhe, S.J., Jan, S.H. and Narayanan, N. (1977), Catecholamine-sensitive adenylate cyclase of caudate nucleus and cerebral cortex. Effect of guanine nucleotides. Biochem. J., 164, 67–74.

    Google Scholar 

  • Takai, Y., Nichiyama, K., Yamamura, H. and Nishizuka, Y. (1975), Guanosine 3′: 5′-monophosphate dependent protein kinase from bovine cerebellum. Purification and characterization. J. biol. Chem., 250, 4690–4695.

    Google Scholar 

  • Thomas, J. (1957), The composition of isolated cerebral tissue: purines. Biochem. J., 66, 665–658.

    Google Scholar 

  • Tomkins, G.M. (1975), The metabolic code. Science, N. Y., 188, 760–763.

    Google Scholar 

  • Torda, C. (1972), Cyclic AMP-dependent diphosphoinositide kinase. Biochim. biophys. Acta, 286, 389–395.

    Google Scholar 

  • Trams, E.G. and Lauter, C.J. (1974), On the sidedness of plasma membrane enzymes. Biochem. biophys. Acta, 345, 180–197.

    Google Scholar 

  • Traversa, U. and Newman, M. (1979), Stereospecific influence of oxazepam hemisuccinate on cyclic AMP accumulation elicited by adenosine in cerebral cortical slices. Biochem. Pharm., 28, 2363–2365.

    Google Scholar 

  • U′Prichard, D.C. and Snyder, S.H. (1978), Guanyl-nucleotide influences on 3H-ligand binding to α-noradrenergic receptors in calf brain membranes. J. biol. Chem., 253, 3444–3452.

    Google Scholar 

  • Walsh, D.A. (1978), Role of the cAMP-dependent protein kinase as the transducer of cAMP action. Biochem. Pharmacol., 27, 1801–1804.

    Google Scholar 

  • Walsh, D.A., Krebs, E.G., Reismann, E.M., Brostrom, M.A., Corbin, J.D., Hickenbottom, J.P., Soderling, T.R. and Perkins, J.P. (1970), The receptor protein for cyclic AMP in the control of glycogenolysis. Ad. Biochem. Psychopharmacol., 3, 265–285.

    Google Scholar 

  • Walter, U., Kanof, P., Schulman, H. and Greengard, P. (1978), Adenosine 3′: 5′-monophosphate receptor proteins in mammalian brain. J. biol. Chem., 253, 6275–6280.

    Google Scholar 

  • Weiler, M. (1979), Protein Phosphorylation, Pion, London.

    Google Scholar 

  • Weiler, M. and Rodnight, R. (1970), Stimulation by cyclic AMP of intrinsic protein-kinase activity in ox brain membrane preparations. Nature, 225, 187–188.

    Google Scholar 

  • Weiler, M. and Rodnight, R. (1973), Protein kinase activity in membrane preparations from ox brain. Biochem. J., 132, 483–492.

    Google Scholar 

  • Weiler, M. and Rodnight, R. (1975), Observations on the binding of adenosine 3′: 5′-monophosphate to cell membrane fragments from ox cerebral cortex. Biochim. biophys. Acta, 389, 573–577.

    Google Scholar 

  • Williams, M. and Rodnight, R. (1975), Stimulation of protein phosphorylation in brain slices by electrical pulses: speed of response and evidence for net phosphorylation. J. Neurochem., 24, 601–603.

    Google Scholar 

  • Williams, M. and Rodnight, R. (1976), Protein phosphorylation in respiring slices of guinea-pig cerebral cortex. Biochem. J., 154, 163–170.

    Google Scholar 

  • Yamamoto, C. and McIlwain, H. (1966), Electrical activities of thin sections from the mammalian brain, maintained in chemically-defined media in vitro. J. Neurochem., 13, 1333–1343.

    Google Scholar 

  • Yamamoto, C. and Matsui, S. (1976), Effect of stimulation of excitatory nerve tract on release of glutamic acid from olfactory cortex slices in vitro. J. Neurochem., 26, 487–491.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Chapman and Hall

About this chapter

Cite this chapter

McIlwain, H. (1981). Brain: Intracellular and Extracellular Purinergic Receptor-systems. In: Burnstock, G. (eds) Purinergic Receptors. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5816-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5816-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-5818-0

  • Online ISBN: 978-94-009-5816-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics