Skip to main content

Part of the book series: Studies in Chemical Physics ((SCP))

  • 242 Accesses

Abstract

In non-relativistic theory the hydrogen atom is one of the few cases for which the Schrödinger equation may be solved exactly. For this to be possible the proton and electron are assumed to be spinless, and the only role that the proton plays is to provide an attractive Coulombic potential; the finite mass of the proton may, of course, be taken into account by using a reduced mass for the electron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Solution of the Dirac equation for the hydrogen atom

  • Be the and Salpeter: pages 63–70.

    Google Scholar 

  • Corinaldesi, E., and Strocchi, F. (1963), Relativistic Wave Mechanics, North-Holland, Amsterdam : part II, Chapters 8 and 9.

    Google Scholar 

  • Dirac, P. A. M. (1958), Quantum Mechanics, Clarendon Press, Oxford: pages 269–273.

    Google Scholar 

  • Rose: pages 157–181.

    Google Scholar 

  • Sakurai: pages 122–131.

    Google Scholar 

Comparison of Dirac and non-relativistic atomic orbitals

  • Bethe and Salpeter: pages 70–71.

    Google Scholar 

  • Powell, R. E. (1968), ‘Relativistic quantum chemistry. The electrons and theNodes’, J. Chem. Fduc., 45, 558.

    Article  Google Scholar 

  • Szabo, A. (1969), ‘Contour diagrams for relativistic orbitals’, J. Chem. Educ., 46, 678.

    Article  Google Scholar 

The Lamb shift

  • Series, G. W. (1957), The Spectrum of Atomic Hydrogen, Clarendon Press, Oxford: pages 37–65.

    Google Scholar 

  • Sikolov, A. A., Koskutov, Y. M., and Ternov, I. M. (1966), Quantum Mechanics, Holt, Rinehart and Winston, New York: pages 350–354.

    Google Scholar 

The introduction of nuclear spin

  • Breit, G. (1930), ‘Possible effects of nuclear spin on X-ray terms’, Phys. Rev., 35, 1447: relativistic corrections to hyperfine splittings.

    Article  Google Scholar 

  • Rose: relativistic corrections to nuclear hyperfine splittings are discussed on pages 188–191.

    Google Scholar 

  • Velenik, A., Živković, T., de Jeu, W. H., and Murrell, J. N. (1970), ‘The hydrogen atom in the presence of the Fermi contact interaction’, Molec. Phys., 18, 693: a demonstration that the Fermi contact operator taken to second order with non-relativistic atomic orbitals leads to an infinite hyperfine splitting.

    Article  Google Scholar 

Many-electron atoms

  • Grant, I. P. (1970), ‘Relativistic calculation of atomic structures’, Adv. Phys., 19, 747: a review of relativistic calculations on atoms.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1973 R. E. Moss

About this chapter

Cite this chapter

Moss, R.E. (1973). The Hydrogen Atom. In: Advanced Molecular Quantum Mechanics. Studies in Chemical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5688-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5688-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-5690-2

  • Online ISBN: 978-94-009-5688-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics