Skip to main content

Temporal fluctuations in grain size, organic materials and iron concentrations in intertidal surface sediment of San Francisco Bay

  • Chapter

Part of the book series: Developments in Hydrobiology ((DIHY,volume 30))

Abstract

The physical and chemical characteristics of the oxidized surface sediment in an estuary fluctuate temporally in response to physical forces and apparently-fluctuating inputs. These characteristics, which include grain size and concentrations of organic materials and iron, will influence both trace-metal geochemistry and bioavailability. Temporal trends in the abundance of fine particles, total organic carbon content (TOC), absorbance of extractable organic material (EOM), and concentration of extractable iron in the sediment of San Francisco Bay were assessed using data sets containing approximately monthly samples for periods of two to seven years. Changes in wind velocity and runoff result in monthly changes in the abundance of fine particles in the intertidal zone. Fine-grained particles are most abundant in the late fall/early winter when runoff is elevated and wind velocities are low; particles are coarser in the summer when runoff is low and wind velocities are consistently high. Throughout the bay, TOC is linearly related to fine particle abundance (r=0.61). Temporal variability occurs in this relationship, as particles are poor in TOC relative to percent of fine particles in the early rainy season. Iron-poor particles also appear to enter the estuary during high runoff periods; while iron is enriched on particle surfaces in the summer. Concentrations of extractable iron and absorbance of EOM vary strongly from year to year. Highest absorbances of EOM occurred in the first year following the drought in 1976–77, and in 1982 and 1983 when river discharge was unusually high. Extractable-iron concentrations were also highest in 1976–77, but were very low in 1982 and 1983.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, F. E., 1983. The northern muddy intertidal: seasonal factors controlling erosion and deposition–a review. Can. J. Fish. aquat. Sci. 40 (Suppl. 1): 143–159.

    Article  Google Scholar 

  • Anderson, F. E. & L. M. Mayer, 1984. Seasonal and spatial variability of particulate matter of a muddy intertidal flood front. Sedimentology 31: 383–394.

    Article  Google Scholar 

  • Anderson, F. E., L. Black, L. M. Mayer & L. E. Watling, 1981. A temporal and spatial study of mudflat texture. Northeastern Geol. 3: 184–191.

    Google Scholar 

  • Balzer, W., 1982. On the distribution of iron and manganese at the sediment/ water interface: thermodynamic versus kinetic control. Geochim. cosmochim. Acta 46: 1153–1161.

    Article  CAS  Google Scholar 

  • Chao, T. T., 1972. Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride. Soil Sci. Soc. am. Proc. 36: 704–768.

    Article  Google Scholar 

  • Chao, T. T., 1984. Use of partial dissolution techniques in geo- chemical exploration. J. Geochem. Explor. 20: 101–135.

    Article  CAS  Google Scholar 

  • Chao, T. T. & L. Zhou, 1983. Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments. Soil Sci. Soc. amer. J. 47: 225–232.

    Article  CAS  Google Scholar 

  • Cloern, J. E., B. E. Cole, R. L. J. Wong & A. E. Alpine, 1985. Temporal dynamics of estuarine phytoplankton: A case study of San Francisco Bay. Hydrobiologia: this volume.

    Google Scholar 

  • Conomos, T. J., 1979. Properties and circulation of San Francisco Bay waters. In T. J. Conomos (ed.), San Francisco Bay: The Urbanized Estuary. Pacific Division Amer. Assoc. Adv. Sci., San Francisco, Calif.: 47–84.

    Google Scholar 

  • Coonley, L. S., Jr., E. B. Baker & H. D. Holland, 1971. Iron in the Mullica River and Green Bay, New Jersey. Chem. Geol. 7: 51–63.

    Article  CAS  Google Scholar 

  • Dale, N. C., 1974. Bacteria in intertidal sediments: Factors related to their distribution. Limnol. Oceanogr. 19: 509–518.

    Article  Google Scholar 

  • Davis, J. A., 1982. Adsorption of natural dissolved organic matter at the oxide/ water interface. Geochim. cosmochim. Acta 46: 2381–2393.

    Article  CAS  Google Scholar 

  • Davis, J. A. & J. O. Leckie, 1978. Surface ionization and cornplexation at the oxide/ water interface. II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J. Colloid Interface Sci. 67: 90–107.

    Article  CAS  Google Scholar 

  • DeFlaun, M. F. & L. M. Mayer, 1983. Relationships between bacteria and grain surfaces in intertidal sediments. Limnol. Oceanogr. 28: 873–881.

    Article  Google Scholar 

  • Forstner, U. & W. Salomons, 1980. Trace metal analysis on polluted sediments, Part I: Assessment of sources and intensities. Envir. tech. Lett. 1: 494–505.

    Article  Google Scholar 

  • Geesey, G. G., L. Borstad & P. M. Chapman, 1984. Influence of flow-related events on concentration and phase distribution of metals in the lower Fraser River and a small tributary stream in British Columbia, Canada. Wat. Res. 18: 233–238.

    Article  CAS  Google Scholar 

  • Gobiel, D., B. Sundby & N. Silverberg, 1981. Factors influencing particulate matter geochemistry in the St. Lawrence estuary turbidity maximum. Mar. Chem. 10: 123–140.

    Article  Google Scholar 

  • Grant, W. D., L. F. Boyer & L. P. Sanford, 1982. The effects of bioturbation on the initiation of motion of intertidal sands. J. mar. Res. 40: 659–677.

    Google Scholar 

  • Herdan, G., 1953. Small Particle Statistics. Elsevier Publ. Co., N.Y., 418 pp.

    Google Scholar 

  • Hunter, K. A., 1980. Microelectrophoretic properties of natural surface-active organic matter in coastal seawater. Limnol. Oceanogr. 25: 807–822.

    Article  CAS  Google Scholar 

  • Hunter, K. A. & P. S. Liss, 1979. The surface charge of suspended particles in estuarine and coastal waters. Nature 282: 823–825.

    Article  CAS  Google Scholar 

  • Jenne, E. A., 1968. Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides. In R. F. Gould (ed.), Trace Inorganics in Water. Am. chem. Soc., Wash., D.C.: 337–379.

    Chapter  Google Scholar 

  • Jenne, E. A., 1977. Trace element sorption by sediments and soils–sites and processes. In W. Chappel & K. Petersen (eds), Symposion on Molybdenum in the Environment. M. Dekker, Inc., N.Y.: 425–553.

    Google Scholar 

  • Jones, B. F. & C. J. Bowser, 1978. The mineralogy and related chemistry of lake sediments. In A. Lerman (ed.), Lakes: Chemistry, Geology, Physics. Springer Verlag, N.Y.: 179–235.

    Google Scholar 

  • Longbottom, M. R., 1970. The distribution of Arenicola marina (L.) with particular reference to the effects of particle size and organic matter of the sediments. J. exp. mar. Biol. Ecol. 5: 138–157.

    Article  Google Scholar 

  • Loring, D. H., 1978. Geochemistry of zinc, copper and lead in the sediments of the estuary and Gulf of St. Lawrence. Can. J. Earth Sci. 15: 757–772.

    Article  CAS  Google Scholar 

  • Luoma, S. N., 1983. Bioavailability of trace metals to aquatic organisms — a review. Sci. Total Envir. 28: 1–22.

    Article  CAS  Google Scholar 

  • Luoma, S. N. & G. W. Bryan, 1979. Trace metal bioavailability: modeling chemical and biological interactions of sediment-bound zinc. In E. A. Jenne (ed.), Chemical Modeling in Aqueous Systems, ACS Symposium Series 93. Am. chem. Soc., Wash., D.C.: 577–609.

    Google Scholar 

  • Luoma, S. N. & G. W. Bryan, 1981. A statistical assessment of the form of trace metals in oxidized estuarine sediments employing chemical extractants. Sci. Total Envir. 17: 165–196.

    Article  CAS  Google Scholar 

  • Luoma, S. N. & G. W. Bryan, 1982. A statistical study of environmental factors controlling concentrations of heavy metals in the burrowing bivalve Scrobicularia plana and the polychaete Nereis diversicolor. Estuar. coast. shelf Sci. 15: 95–108.

    Article  CAS  Google Scholar 

  • Luoma, S. N. & J. A. Davis, 1983. Requirements for modeling trace metal partitioning in oxidized estuarine sediments. Mar. Chem. 12: 159–181.

    Article  CAS  Google Scholar 

  • Luoma, S. N. & E. A. Jenne, 1977. The availability of sediment-bound cobalt, silver and zinc to a deposit-feeding clam. In R. E. Wildung & H. Drucker (eds), Biological Implications of Metals in the Environment. Available as CONF-750929, U.S. NTIS, Springfield, VA: 213–231.

    Google Scholar 

  • Luoma, S. N., D. J. Cain & C. Johansson, 1985. Temporal fluctuations of silver, copper and zinc in the bivalve Macoma balthica in South San Francisco Bay. Hydrobiologia: this volume.

    Google Scholar 

  • Luoma, S. N., P. V. Cascos & R. M. Dagovitz, 1984. Trace metals in Suisun Bay, California: a preliminary report. Water Resources Investigations Rept. 84–4170. U.S. Geological Survey, Sacramento, Calif., 35 pp.

    Google Scholar 

  • Mayer, L. M., 1982. Retention of riverine iron in estuaries. Geochim. cosmochim. Acta 46: 1003–1009.

    Article  CAS  Google Scholar 

  • Mayer, L. M., 1982. Retention of riverine iron in estuaries. Geochim. cosmochim. Acta 46: 1003–1009.

    Article  CAS  Google Scholar 

  • Mayer, L. M. & L. K. Fink, Jr., 1980. Granulometric dependence of chromium accumulation in estuarine sediments in Maine. Estuar. coast. mar. Sci. 11: 491–503.

    Article  Google Scholar 

  • Mayer, L. M. & P. M. Rossi, 1982. Specific surface areas in coastal sediments: relationships with other textural factors. Mar. Geol. 45: 241–252.

    Article  Google Scholar 

  • Mayer, L. M. & P. M. Rossi, 1982. Specific surface areas in coastal sediments: relationships with other textural factors. Mar. Geol. 45: 241–252.

    Article  Google Scholar 

  • Montani, S. & T. Okaichi, 1982. Iron in sediments and pore water of the Harima-Nada. Bull. jap. Soc. Sci. Fish. 48: 1473–1479.

    CAS  Google Scholar 

  • Nichols, F. H. & J. K. Thompson, 1982. Seasonal growth in the bivalve Macoma balthica near the southern limit of its range. Estuaries 5: 110–120.

    Article  Google Scholar 

  • Nichols, F. H. & J. K. Thompson, 1985. Time scales of change in the San Francisco Bay benthos. Hydrobiologia: this volume.

    Google Scholar 

  • Nissenbaum, A. & D. J. Swaine, 1976. Organic matter-metal interactions in Recent sediments: the role of humic substances. Geochim. cosmochim. Acta 40: 809–816.

    Article  CAS  Google Scholar 

  • Oviatt, C. A. & S. W. Nixon, 1975. Sediment resuspension and deposition in Narragansett Bay. Estuar. coast. mar. Sci. 3: 201–217.

    Article  CAS  Google Scholar 

  • Owen, G., 1966. Feeding. In K. M. Wilbur & C. M. Yonge (eds), Physiology of Mollusca. Acad. Press, N.Y.: 1–52.

    Google Scholar 

  • Parker, J. G., 1982. Structure and chemistry of sediments in Belfast Lough, a semi-enclosed marine bay. Estuar. coast. shelf Sci. 15: 373–384.

    Article  CAS  Google Scholar 

  • Picard, G. L. & G. T. Felbeck, Jr., 1976. The complexation of iron by marine humic acid. Geochim. cosmochim. Acta 40: 1347–1350.

    Article  CAS  Google Scholar 

  • Perdue, E. M., C. R. Lytle, M. S. Sweet & J. W. Sweet, 1981. The chemical and biological impact of Klamath Marsh on the Williamson River, Oregon. Water Resources Research Institute, Oregon State University, WRRI-71, 199 pp.

    Google Scholar 

  • Rashid, M. A. & G. E. Reinson, 1979. Organic matter in surficial sediments of the Miramichi estuary, New Brunswick, Canada. Estuar. coast. mar. Sci. 8: 23–36.

    Article  CAS  Google Scholar 

  • Reid, R. G. B. & A. Reid, 1969. Feeding processes of members of the genus Macoma ( Mollusca: Bivalvia). Can. J. Zool. 47: 649–657.

    Article  Google Scholar 

  • Rhoads, D. C., K. Tenore & M. Browne, 1975. The role of suspended bottom mud in nutrient cycles of shallow embayments. In L. E. Cronin (ed.), Estuarine Research, Vol. 1. Acad. Press, Inc., N.Y.: 563–579.

    Google Scholar 

  • Rhoads, D. C., J. Y. Yingst & W. Ullman, 1978. Seafloor stability in Central Long Island Sound: Seasonal changes in erodability of fine-grained sediments. In M. Wiley (ed.), Estuar. Interactions. Acad. Press, N.Y.: 221–244.

    Google Scholar 

  • Rublee, P. A., 1982. Bacteria and microbial distribution in estuarine sediments. In V. S. Kennedy (ed.), Estuarine Comparisons. Acad. Press, Inc., N.Y.: 159–182.

    Google Scholar 

  • Santschi, P. H., P. Bower, U. P. Nyffeler, A. Azevedo & W. S. Broecker, 1983. Estimates of the resistance to chemical transport posed by the deep-sea boundary layer. Limnol. Oceanogr. 28: 899–912.

    Article  CAS  Google Scholar 

  • Schoer, J., Y. T. Hong & U. Forstner, 1983. Variations of chemical forms of iron, manganese and zinc in suspended sediments from the Elbe and Weser Rivers during estuarine mixing. Envir. Tech. Lett. 4: 277–282.

    Article  CAS  Google Scholar 

  • Schwertmann, U., 1973. Use of oxalate for Fe extraction from soils. Can. J. soil Sci. 53: 244–246.

    Article  CAS  Google Scholar 

  • Sholkovitz, E. R., E. A. Boyle & N. B. Price, 1978. The removal of dissolved humic acids and iron during estuarine mixing. Earth planet. Sci. Lett. 40: 130–136.

    Article  CAS  Google Scholar 

  • Tipping, E. & C. Woof, 1983. Elevated concentrations of humic substances in a seasonally anoxic hypolimnion: evidence for co-accumulation with iron. Arch. Hydrobiol. 98: 137–145.

    Google Scholar 

  • Walters, R. A., R. T. Cheng & T. J. Conomos, 1985. Time scales of circulation and mixing processes of San Francisco Bay waters. Hydrobiologia: this volume.

    Google Scholar 

  • Wangersky, P. J., 1978. Production of dissolved organic matter. In O. Kinne (ed.), Marine Ecology, Vol. 4, Dynamics. J. Wiley & Sons, N.Y.: 115–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Thomson-Becker, E.A., Luoma, S.N. (1985). Temporal fluctuations in grain size, organic materials and iron concentrations in intertidal surface sediment of San Francisco Bay. In: Cloern, J.E., Nichols, F.H. (eds) Temporal Dynamics of an Estuary: San Francisco Bay. Developments in Hydrobiology, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5528-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5528-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8940-1

  • Online ISBN: 978-94-009-5528-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics