Skip to main content

Interactions of reservoir microbiota: eutrophication — related environmental problems

  • Chapter
Microbial Processes in Reservoirs

Part of the book series: Developments in Hydrobiology ((DIHY,volume 27))

Abstract

Reservoir ecosystems provide diverse and variable habitats for microbial assemblages. Fossil evidence of microbial assemblages date back 3400–3500 million years and highlight the important historical role of microbial interactions in the evolution of aquatic communities. Simple mathematical representations help to conceptualize the interaction of microbial species; however, they are too simplified and assumption-based to accurately describe interactions in reservoirs. Experimental observations of dominant reservoir species remain the best tool for deciphering microbial interactions.

General microbial interactions occur within and between the autotrophic and heterotrophic components of microbial assemblages. Community metabolism, physical and chemical factors, and sedimentation/sediment systems regulate the structure and function of the reservoir microbial habitat.

Reservoir microbial interactions change with the natural ageing process known as eutrophication. One general characteristic of the advanced stages of eutrophication is the increased frequency of population imbalances or blooms with large numbers of cyanobacteria. Microbial interactions during bloom sequences often result in undesirable water quality characteristics. Recent studies of bloom interactions point to bloom products which add new environmental health significance to traditional eutrophication-related water quality problems. In addition to the taste and odor problems commonly associated with bloom events, episodes of toxicity, mutagenicity and teratogenicity have emerged. Autotrophic/heterotrophic imbalances can also occur with potential public health problems involving pathogens and/or resistance factors (R factor plasmids).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, B.A., 1929. The Cladothrix dichotoma and allied organisms as a cause of ‘indeterminate’ taste in chlorinated water. Wat. and Wat. Eng. 31:309–321.

    Google Scholar 

  • Allison, F.E., Hoover, S.R. & Morris, H.J., 1937. Physiological studies with the nitrogen fixing alga, Nostoc muscorum. Bot. Gaz. 98:433–445.

    CAS  Google Scholar 

  • American Water Works Association, 1982. Disinfection. Committee Report. J. am. Wat. Wks. Ass. 74:376–380.

    Google Scholar 

  • Beeton, A.M. & Edmondson, W.T., 1972. The eutrophication problem. J. Fish. Res. Bd. Can. 29:673–682.

    Google Scholar 

  • Belanger, T.V., 1981. Benthic oxygen demand in Lake Apopka, Florida. Wat. Res. 15:267–274.

    CAS  Google Scholar 

  • Bell, J.B., Macrae, W.R. & Elliott, G.E., 1980. Incidence of R factors in coliform, fecal coliform, and Salmonella populations of the Red River in Canada. Appl. envir. Microbiol. 40:486–491.

    CAS  Google Scholar 

  • Bengtsson, L., 1975. Phosphorus release from a highly eutrophic lake sediment. Verh. int. Ver. Limnol. 19:1107–1116.

    Google Scholar 

  • Billings, W.H., 1981. Water-associated human illness in northeast Pennsylvania and its suspected association with blue-green algae blooms. In Carmichael, W.W., (ed.), The water environment: algal toxins and health: 243–255.

    Google Scholar 

  • Bowman, G.T. & Delfino, J.J., 1980. Sediment oxygen demand techniques: a review and comparison of laboratory and in situ systems. Wat. Res. 14:491–499.

    CAS  Google Scholar 

  • Brewer, W.S., Abernathy, A.R. & Paynter, M.J.B., 1977. Oxygen consumption by freshwater sediments. Wat. Res. 11:471–473.

    CAS  Google Scholar 

  • Briley, K.F., Williams, R.F., Longley, K.E. & Sorber, C.A., 1979. Trihalomethane production from algal precursors. In Jolley, R.L., et al., (eds.), Water Chlorination: Environmental Impact and Health Effects 3, Ann Arbor Press, Ann Arbor: 117–129.

    Google Scholar 

  • Briley, K.F., Williams, R.F. & Sorber, C.A., 1984. Alternative water disinfection schemes for reduced trihalomethane formation 2. Algae as precursors for trihalomethanes in chlorinated drinking water. US Environmental Protection Agency (EPA-600/S2–84–005), Washington, DC.

    Google Scholar 

  • Bull, A.T. & Slater, J.H., 1982. Microbial interactions and communities. Academic Press, London. 545 pp.

    Google Scholar 

  • Cairns, J. & Lanza, G.R., 1972. Pollution controlled changes in algal and protozoan communities. In Mitchell, R., (ed.), Water Pollution Microbiology. Wiley-Interscience, New York: 245–272.

    Google Scholar 

  • Carlson, R.E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22:361–369.

    CAS  Google Scholar 

  • Carmichael, W.W., 1981. Freshwater blue-green algae (cyanobacteria) toxins — a review. In Carmichael, W.W., (ed.), The Water Environment: Algal Toxins and Health. Plenum Press, New York: 1–13.

    Google Scholar 

  • Carmichael, W.W. & Gorham, P.R., 1978. Anatoxins from clones of Anabaena flos-aquae isolated from lakes of western Canada. Mitt. int. Ver. Limnol 21:285–295.

    CAS  Google Scholar 

  • Carmichael, W.W. & Gorham, P.R., 1981. The mosaic nature of toxic blooms of cyanobacteria. In Carmichael, W.W., (ed.), The Water Environment: Algal Toxins and Health. Plenum Press, New York: 161–172.

    Google Scholar 

  • Carr, N.G. & Pearce, J., 1966. Photoheterotrophism in blue-green algae. Biochem. J. 99:28P–29P.

    CAS  Google Scholar 

  • Collins, M., 1979. Possible link between water supply and high birth defect rate. Proc. am. Wat. Wks. Ass. 1978 Annual Conf. Part II (Atlantic City, New Yersey), Paper 24–5.

    Google Scholar 

  • Collins, M., Gowans, C.S., Garro, F., Estervig, D. & Swanson, T., 1981. Temporal association between an algal bloom and mutagenicity in a water reservoir. In Carmichael, W.W., (ed.), The Water Environment: Algal Toxins and Health: 271–284.

    Google Scholar 

  • Collins, R.P. & Kalmis, K., 1965. Volatile constituents of Synura petersenii Part I. The carbonyl fraction. Lloydia 28:48–52.

    CAS  Google Scholar 

  • Davis, W.A., Kane, J.G. & Garagusi, V.F.,1978. Human A eromonas infections: a review of the literature and a case report of endocarditis. Medicine (Baltimore) 57:267–277.

    Google Scholar 

  • Dillon, D.J. & Rigler, F.H., 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19:767–773.

    CAS  Google Scholar 

  • Drury, D.D. & Gearheart, R.A., 1975. Bacterial-population dynamics and dissolved oxygen minimum. J. am. Wat. Wks. Ass. 67:154–158.

    Google Scholar 

  • Dufour, A.P. & Jakubowski, W., 1982. Drinking water and legionnaires disease. J. am. Wat. Wks. Ass. 74:631–637.

    Google Scholar 

  • Ecker, M.M., Foxall, T.L. & Sasser, J.J., 1981. Morphology of toxic versus non-toxic strains of Aphanizomenon flos-aquae. In Carmichael, W.W., (ed.), The Water Environment: Algal Toxins and Health. Plenum Press, New York: 113–126.

    Google Scholar 

  • Edmonds, P., 1978. Microbiology: an environmental perspective. Macmillan Publishing Co., Inc. New York: 293–313.

    Google Scholar 

  • Eloff, J.N., 1981. Autecology of Microcystis. In Carmichael, W.W., (ed.), The Water Environment: Algal Toxins and Health. Plenum Press, New York: 71–96.

    Google Scholar 

  • Fay, P., 1965. Heterotrophy and nitrogen fixation in Chlorogloea fritschü. j. gen. Microbiol. 39:11–20.

    PubMed  CAS  Google Scholar 

  • Federle, T.W. & Vestal, J.R., 1982. Evidence of microbial succession on decaying leaf litter in an arctic lake. Can. J. Microbial. 28: 686–695.

    CAS  Google Scholar 

  • Ferramola, R., 1949. Summary: earthy odor produced by Streptomyces in water. Assoc. Interam. ingenieria sanitara 2:371–380.

    Google Scholar 

  • Fields, B.S., Shotts, E.B., Feeley, J.C., Gorman, G.W. & Martin, W.T., 1984. Proliferation of Legionella pneumophila as an intracellular parasite of the ciliated protozoan Tetrahymena pyriformis. Appl. envir. Microbiol. 47:467–471.

    CAS  Google Scholar 

  • Fliermans, C.B., Cherry, W.B., Orrison, L.H. & Thacker, L.. 1979. Isolation of Legionella pneumophila from non-epidemic related aquatic habitats. Appl. envir. Microbiol. 37:1239–1242.

    CAS  Google Scholar 

  • Fogg, G.E., 1966. Algal Cultures and Phytoplankton Ecology. The University of Wisconsin Press, Madison: 59–81.

    Google Scholar 

  • Fogg, G.E., 1969. The physiology of an algal nuisance. Proc. r. Soc. Lon., Ser. B., 173:175–189.

    Google Scholar 

  • Fogg, G.E. & Westlake, D.F., 1955. The importance of extra-cellular products of algae in freshwater. Verh. int. Ver. Limnol. 12:219–232.

    Google Scholar 

  • Francis, G., 1878. Poisonous Australian lake. Nature 18:11–12.

    Google Scholar 

  • Gerber, N.N., 1967. Geosmin, an earthy-smelling substance isolated from actinomycetes. Biotechnol. Bioeng. 9:321–327.

    CAS  Google Scholar 

  • Gerber, N.N., 1969. A volatile metabolite of actinomycetes, 2-methylisoborneol. J. Antibiot. (Tokyo) 22: 508–509.

    CAS  Google Scholar 

  • Gerber, N.N., 1979. Volatile substances from actinomycetes: their role in the odor pollution of water. CRC Crit. Rev. Envir. Cont. 9:191–214.

    Google Scholar 

  • Gerber, N.N. & Lechevalier, H.A., 1965. Geosmin an earthy-smelling substance isolated from actinomycetes. Appl. Microbiol. 13:935–938.

    PubMed  CAS  Google Scholar 

  • Gordon, J.A., 1978. Definition of dissolved oxygen depletion mechanisms operating in the metalimnia of deep impoundments. Water Resources Research Center Res. Rep. No. 63, University of Tennessee. 110 pp.

    Google Scholar 

  • Gordon, J.A. & Skelton, B.A., 1977. Reservoir metalimnion oxygen demands. J. env. eng. Div. 103(EE6):1001–1011.

    CAS  Google Scholar 

  • Grabow, W.O.K., 1970. Literature survey: the use of bacteria as indicators of fecal pollution in water. South African Council for Scientific and Industrial Research (Special Report o/Wat. 1), Pretoria.

    Google Scholar 

  • Grabow, W.O.K., Prozesky, O.W. & Smith, L.S., 1974. Review Paper. Drug resistant coliforms call for review of water quality standards. Wat. Res. 8:1–9.

    Google Scholar 

  • Grabow, W.O.K., Prozesky, O.W. & Burger, J.S., 1975. Behaviour in a river and dam of coliform bacteria with transferable or non-transferable drug resistance. Wat. Res. 9:777–782.

    Google Scholar 

  • Gunnison, D. & Alexander, M., 1975. Resistance and susceptibility of algae to decomposition by natural microbial communities. Limnol. Oceanogr. 20:64–70.

    Google Scholar 

  • Gunnison, D., Brannon, J.M., Smith, I. & Burton, G.A., 1980a. Changes in respiration and anaerobic nutrient regeneration during the transition phase of reservoir development. In Barcia, J. & Mur, L.R., (eds.). Hypertrophie ecosystems, SIL Workshop on hypertrophie ecosystems. W. Junk, The Hague.

    Google Scholar 

  • Gunnison, D., Brannon, J.M., Smith, I. & Preston, K.M., 1980b. A reaction chamber for study of interactions between sediments and water under conditions of static or continuous flow. Wat. Res. 14:1529–1532.

    CAS  Google Scholar 

  • Gunnison, D., Chen, R.L. & Brannon, J.M., 1983. Relationship of materials in flooded soils and sediments to the water quality of reservoirs-I oxygen consumption rates. Wat. Res. 17:1609–1617.

    CAS  Google Scholar 

  • Hall, K.J. & Hyatt, K.D., 1974. Marion Lake (IBP)-from bacteria to fish. J. Fish. Res. Bd. Can. 31:893–911.

    Google Scholar 

  • Hammer, U.T., 1964. The succession of bloom species of blue-green algae and some causal factors. Verh. int. Ver. Limnol. 15:829–843.

    Google Scholar 

  • Hannon, H.H., 1979. Chemical modifications in reservoir-reg-ulated streams. In Ward, J.V. & Stanford, J.A., (eds.), The Ecology of Regulated Streams. Plenum Press, New York: 75–91.

    Google Scholar 

  • Hansen, K., 1961. Lake types and lake sediments. Verh. int. Ver. Limnol. 14:285–303.

    Google Scholar 

  • Hargrove, B.T., 1972. Oxidation-reduction potentials, oxygen concentration and oxygen uptake of profundal sediments in a eutrophic lake. Oikos 23:167–177.

    Google Scholar 

  • Hein, M.K. & Koppen, J.D., 1979. Effects of thermally elevated discharges on the structure and composition of estuarine periphyton diatom assemblages. Estuar. coast. mar. Sci. 9:385–401.

    Google Scholar 

  • Hendricks, A.C. & Silvey, J.K.G., 1973. Nutrient ratio variation in reservoir sediments. J. Wat. Pollut. Cont. Fed. 45:490–497.

    CAS  Google Scholar 

  • Henley, D., 1970. Odorous metabolites and other selected studies of cyanophyta. Ph.D. Dissertation, North Texas State University, Denton, Texas.

    Google Scholar 

  • Hoare, D.S., Hoare, S.L. & Moore, R.B., 1967. The photoassimilation of organic compounds by autotrophie blue-green algae. J. gen. Microbiol. 49–351–370.

    CAS  Google Scholar 

  • Hoehn, R., Randall, C.W., Goode, R.P. & Shaffer, T.B.,1978. Chlorination and water treatment for minimizing trihalomethanes in drinking water. In R.L. Jolley et al. (eds.), Water Chlorination: Environmental Impact and Health Effects 2, Ann Arbor Press, Ann Arbor: 519–535.

    Google Scholar 

  • Hoehn, R.C., Barnes, D.B., Thompson, B.C., Randall, C.W., Grizzard, T.J. & Shaffer, P.T.B., 1980. Algae as sources of trihalomethane precursors. J. am. Wat. Wks, Ass. 72:344–349.

    CAS  Google Scholar 

  • Holm-Hansen, O., 1966. Recent advances in the physiology of blue-green algae. Proc. Symp. Fed. Wat. Pollut. Cont. Ass., Environmental requirements of blue-green algae.

    Google Scholar 

  • Hutchinson, G.E.,1957. A treatise on limnology, 1. J. Wiley & Sons, New York: 426.

    Google Scholar 

  • Izaquirre, G., Hwang, C.J., Krasner, S.W. & McGuire, M.J., 1982. Geosmin and 2-methyl-isoborneol from cyanobacteria in three water supply systems. Appl. envir. Microbiol. 43:708–714.

    Google Scholar 

  • Izaquirre, G., Hwang, C.J., Krasner, S.W. & McGuire, M.J., 1983. Production of 2-methyl-isoborneol by two benthic cyanophyta. Wat. Sci. Tech. (Finland) 15:211–220.

    Google Scholar 

  • Jenkins, D., Medsker, L.L. & Thomas, J.F., 1967. Odorous compounds in natural waters. Some sulfur compounds associated with blue-green algae. Envir. Sci. Technol. 1:731–735.

    CAS  Google Scholar 

  • Juttner, F., 1978. Nor-carotenoids as the major volatile excretion products of Cyanidium. Z. Naturforsch 34:186–191.

    Google Scholar 

  • Juttner, F., 1979. The algal excretion product, Geranylacetone: a potent inhibitor of carotene biosynthesis in Synechococcus. Z. Naturforsch 34:957–960.

    Google Scholar 

  • Juttner, F., 1984. Dynamics of volatile organic substances associated with cyanobacteria and algae in a eutrophic shallow lake. Appl. envir. Microbiol. 47:814–820.

    CAS  Google Scholar 

  • Kahn, M.C., 1920. Microscopical trouble-makers in the water supply. Nat. Hist. 20:83–90.

    Google Scholar 

  • Kapuscinski, R.B. & Mitchell, R.,1983. Sunlight-induced mortality of viruses and Escherichia coli in coastal seawater. Envir. Sci. Technol. 17:1–6.

    CAS  Google Scholar 

  • Keating, K.I., 1976. Algal metabolite influence on bloom sequence in eutrophied freshwater ponds. US Environmental Protection Agency (EPA-600/3–76–081), Washington, DC 148 pp.

    Google Scholar 

  • Keleti, G., Sykora, J.L., Lippy, E.C. & Shapiro, M.A., 1979. Composition and biological properties of lipopolysaccharides isolated from Schizothrix calcicola (Ag.) Gomont (Cyanobacteria). Appl. envir. Microbiol. 38:471–477.

    CAS  Google Scholar 

  • Kerr, P.C., Paris, D.F. & Brockway, D.L.,1970. The interrelation of carbon and phosphorus in regulating heterotrophic and autotrophie populations in aquatic ecosystems. US Department of the Interior, Federal Water Quality Administration, Water Pollution Control Research Series (16050 FGS), Washington, DC.

    Google Scholar 

  • King, D.L., 1970. The role of carbon in eutrophication. J. Wat. Pollut. Cont. Fed. 42: 2035–2051.

    CAS  Google Scholar 

  • Kirpenko, Yu. A., Sirenko, L.A. & Kirpenko, N.I.,1981. Some aspects concerning remote after-effects of blue-green algae toxins: impact on warm-blooded animals. In Carmichael, W.W. (ed.), The Water Environment: Algal Toxins and Health: 257–269.

    Google Scholar 

  • Kratz, W.A. & Meyers, J., 1955. Nutrition and growth of several blue-green algae. Am. J. Bot. 42:282–287.

    CAS  Google Scholar 

  • Kuentzel, L.E., 1969. Bacteria, carbon dioxide, and algal blooms. J. Wat. Pollut. Cont. Fed. 41:1737–1747.

    CAS  Google Scholar 

  • LaLiberte, P. & Grimes, D.J., 1982. Survival of Escherichiacoli in lake bottom sediment. Appl. envir. Microbiol. 43:623–628.

    CAS  Google Scholar 

  • Lanza, G.R. & Cairns, J.,1972. Physio-morphological effects of abrupt thermal stress on diatoms. Trans. am. Microscop. Soc. 91:276–298.

    Google Scholar 

  • Lazaroff, N., 1966. Photoinduction and photoreversal of the Nostocacean development cycle. J. Phycol. 2:7–17.

    Google Scholar 

  • Lockett, C.L., 1976. Classification of seventeen central Texas reservoirs. M.S. Thesis, Southwest Texas State University, San Marcos, Texas.

    Google Scholar 

  • Lowe, D.R., 1980. Stromatolites, 3,400 Myr old from the Archean of Western Australia. Nature 284:441–443.

    Google Scholar 

  • May, 1981. The occurrence of toxic cyanophyte blooms in Australia. In Carmichael, W.W., (ed.), The Water Environment: Algal Toxins and Health, Plenum Press, New York: 127–141.

    Google Scholar 

  • McDonnell, J.C., 1975. In situ phosphorus release rates from anaerobic lake sediments M.S. Thesis, University of Washington, Seattle, Washington.

    Google Scholar 

  • Medsker, L.L., Jenkins, D., Thomas, J.F. & Koch, C., 1969. Odorous compounds in natural waters: 2-exo-hydroxy2-methylbornane, the major odorous compound produced by several actinomycetes. Envir. Sci. Technol. 3:476–477.

    CAS  Google Scholar 

  • Moikeha, S.N., Chu, G.W. & Berger, L.R., 1971a. Dermatitis-producing alga Lyngbya majuscula Gomont in Hawaii I. isolation and chemical characterization of the toxic factor. J. Phycol. 7:4–8.

    CAS  Google Scholar 

  • Moikeha, S.N. & Chu, G.W.,1971b. Dermatitis-producing alga Lyngbya majuscula Gomont in Hawaii II. biological properties of the toxic factor. J. Phycol. 7:8–13.

    CAS  Google Scholar 

  • Morris, R.L., 1962. Actinomycetes studied as taste and odor cause. Wat. and Sew. Wks. 109–76–77.

    Google Scholar 

  • Morris, J.C. & Baum, B., 1978. Precursors and mechanisms of haloform formation in the chlorination of water supplies. In Jolley, R.L., et al. (eds.), Water Chlorination: Environmental Impact and Health Effects 2, Ann Arbor Press, Ann Arbor: 29–48.

    Google Scholar 

  • Morris, J.C., Ram, N., Baum, B. & Wajon, E., 1980. Formation and significance of N-chloro compounds in water supplies. US Environmental Protection Agency (EPA-600/ 2–80–031), Washington, DC 353 pp.

    Google Scholar 

  • Mortimer, C.H., 1941. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29:280–329.

    CAS  Google Scholar 

  • Murphy, T.P., Lean, D.R.S. & Nalewajko, C., 1976. Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae. Science 192:900–902.

    PubMed  CAS  Google Scholar 

  • National Cancer Institute, 1976. Report on carcinogenesis bioassay of chloroform. National Cancer Institute Carcinogenesis Program, Bethesda, Maryland.

    Google Scholar 

  • Neel, J.K., 1966. Impact of reservoirs. In Frey, D.G. (ed.). Limnology in North America. University of Wisconsin Press, Madison: 575–593.

    Google Scholar 

  • Nix, J. & Ingols, R., 1981. Oxidized manganese from hypolimnetic water as a possible cause of trout mortality in hatcheries. Progess. Fish. Cult. 43:32–36.

    CAS  Google Scholar 

  • Odum, E.P., 1971. Fundamentals of Ecology, 3rd ed. W.B. Saunders Co., Philadelphia. 574 pp.

    Google Scholar 

  • Oliver, B.G. & Shindler, D.B.,1980. Trihalomethanes from the chlorination of aquatic algae. Envir. Sci. Technol. 14:1502–1505.

    CAS  Google Scholar 

  • Paerl, H.W.,1980. Attachment of micro-organisms to living and detrital surfaces in freshwater systems. In Bitton, G. & Marshall, K.C., (eds.) Adsorption of Micro-organisms to Surfaces. John Wiley & Sons, New York: 375–402.

    Google Scholar 

  • Palmer, C.M.,1962. Algae in water supplies. US Department of Health, Education, and Welfare (Public Health Service Publication No. 657), Washington, DC.

    Google Scholar 

  • Porter, K. G., 1973. Selective effects of grazing by zooplankton on the phytoplankton of Fuller Pond, Kent, Connecticut. Ph.D. Dissertation, Yale University, Hartford, Connecticut.

    Google Scholar 

  • Ransom, R.E., Nerad, T.A. & Meier, P.G., 1978. Acute toxicity of some blue-green algae to the protozoan Paramecium caudatum. J. Phycol. 14:114–116.

    Google Scholar 

  • Reichardt, W., 1981. Influence of methylheptenone and related phytoplankton norcarotenoids on heterotrophic aquatic bacteria. Can. J. Microbiol. 27:144–147.

    PubMed  CAS  Google Scholar 

  • Ridley, J.E. & Symons, J.M., 1972. New approaches to water quality control in impoundments. In R. Mitchell (ed.). Water Pollution Microbiology. Wiley-Interscience, New York: 389–412.

    Google Scholar 

  • Rippey, S.R. & Cabelli, V.J., 1980. Occurrence of Aeromonas hydrophila in limnetic environments: relationship of the organism to trophic state. Microb. Ecol. 6:45–54.

    Google Scholar 

  • Rolan, R., 1973. Laboratory and field investigations in general ecology. The Macmillan Co., New York: 39–41.

    Google Scholar 

  • Rosen, A.A., Mashni, C.I. & Safferman, R.S., 1970. Recent developments in the chemistry of odour in water: the cause of earthy/musty odor. Wat. Treat. Exam. 19:106–119.

    CAS  Google Scholar 

  • Safferman, R.S., Rosen, A., Mashni, C.I. & Morris, M.E., 1967. Earthy-smelling substance from a blue-green alga. Envir. Sci. Technol. 1:429–430.

    Google Scholar 

  • Sakevich, A., 1973. Volatile growth-inhibiting metabolites of blue-green algae. Gidrobiologicheskii Zhurnal 9:25–29.

    Google Scholar 

  • Scherer, S. & Boger, P., 1982. Respiration of blue-green algae in the light. Arch. Mikrobiol. 132:329–332.

    CAS  Google Scholar 

  • Schindler, D.W., 1977. Evolution of phosphorus limitation in lakes. Science 195:260–262.

    PubMed  CAS  Google Scholar 

  • Scott, W.E., Barlow, D.J. & Hauman, J.H., 1981. In Carmichael, W.W. (ed.), The Water Environment: Algal Toxins and Health. Plenum Press, New York: 49–69.

    Google Scholar 

  • Segura, R.D., 1978. Non-conservative cation dynamics in a deep-storage reservoir in Central Texas. M.S. Thesis, Southwest Texas State University, San Marcos, Texas.

    Google Scholar 

  • Shapiro, J., 1970. A statement on phosphorus. J. Wat. Pollut. Cont. Fed. 42:772–775.

    Google Scholar 

  • Shapiro, J., 1973. Blue-green algae: why they become domi nant. Science 179:382–384.

    PubMed  CAS  Google Scholar 

  • Silverman, G.S., Nagy, L.A. & Olson, B.H., 1983. Variations in particulate matter, algae, and bacteria in an uncovered, finished drinking-water reservoir. J. am. Wat. Wks, Ass. 75:191–195.

    Google Scholar 

  • Silvey, J.K.G., Russell, J.C., Redden, D.R. & McCormick, W.C., 1950. Actinomycetes and common tastes and odors. J. am. Wat. Wks. Ass. 42:1018–1026.

    CAS  Google Scholar 

  • Silvey, J.K.G. & Wyatt, J.T., 1971. The interrelationship between freshwater bacteria, algae, and actinomycetes in southwestern reservoirs. In Cairns, J. (ed.), The Structure and Function of Fresh-water Microbial Communities. Research Division Monograph 3, Virginia Polytechnic Institute and State University, Blacksburg, Virginia: 250–275.

    Google Scholar 

  • Silvey, J.K.G., Henley, D.E. & Wyatt, J.T., 1972. Planktonic blue-green algae: growth and odor-production studies. J. am. Wat. Wks. Ass. 64:35–39.

    CAS  Google Scholar 

  • Singleton, P., 1983. Colloidal clay inhibits conjugal transfer of R-plasmid R1 drd-19 in Escherichia coli. Appl. envir. Microbiol. 46:756–757.

    CAS  Google Scholar 

  • Sivonen, K., 1982. Factors influencing odour production by actinomycetes. Hydrobiol. 86:165–170.

    Google Scholar 

  • Smith, V.H., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669–671.

    PubMed  CAS  Google Scholar 

  • Smith, V.H., 1979. Nutrient dependence of primary productivity in lakes. Limnol. Oceanogr. 24:1051–1064.

    Google Scholar 

  • Snell, T.W., 1980. Blue-green algae and selection in rotifer populations. Oecologia (Berl.) 46:343–346.

    Google Scholar 

  • Soltero, R.A. & Nichols, D.G., 1981. In Carmichael, W.W. (ed.), The Water Environment: Algal Toxins and Health. Plenum Press, New York: 143–159.

    Google Scholar 

  • Stewart, W.D.P., 1969. Biological and ecological aspects of nitrogen fixation by free-living micro-organisms. Proc. r. Soc. Lon., Ser. B., 172:367–388.

    CAS  Google Scholar 

  • Stewart, W.D.P. & Pearson, H.W.,1970. Effects of aerobic and anaerobic conditions on growth and metabolism of blue-green algae. Proc. r. Soc. Lon., Ser. B., 175:293–311.

    CAS  Google Scholar 

  • Straskraba, M., Hrbacek, J. & Javornicky, P., 1973. Effects of an upstream reservoir on the stratification conditions in Slapy Reservoir. Hydrobiol. Stud. 2:7–82.

    Google Scholar 

  • Svedrup, H.V., Johnson, M.W. & Fleming, R.H., 1942. The oceans, Their Physics, Chemistry, and General Biology. Prentice Hall, Englewood Cliffs, New Jersey. 1087 pp.

    Google Scholar 

  • Sykora, J.L., Keleti, G., Roche, R., Volk, D.R., Kay, G.P., Burgess, R.A., Shapiro, M.A. & Lippy, E.C., 1980. Endotoxins, algae, and Limulus amoebocyte lysate test in drinking water. Wat. Res. 14:829–839.

    Google Scholar 

  • Sykora, J.L. & Keleti, G., 1981. Cyanobacteria and endotoxins in drinking water supplies. In Carmichael, W.W. (ed.), The Water Environment: Algal Toxins and Health. Plenum Press, New York: 285–301.

    Google Scholar 

  • Sylvester, R.O. & Seabloom, R.W., 1965. Influence of site characteristics on the quality of impounded water. J. amer. Wat. Wks. Ass. 57:1528–1546.

    CAS  Google Scholar 

  • Tabachek, J.L. & Yurkowski, M., 1976. Isolation and identification of blue-green algae producing muddy odor metabolites, geosmin, and 2-methylisoborneol, in saline lakes in Manitoba. J. Fish. Res. Bd. Can. 33:25–35.

    CAS  Google Scholar 

  • Taylor, W.D., Williams, L.R., Hem, S.C., Lambou, V.W., Howard, C.L., Morris, F.A. & Morris, M.K., 1981. Phytoplankton water quality relationships in US lakes, Part VII: algae associated with or responsible for water quality problems. US Environmental Protection Agency (EPA-600/ S3–80–100), Washington, DC.

    Google Scholar 

  • Tison, D.L., Pope, D.H., Cherry, W.B. & Fliermans, C.B., 1980. Growth of Legionella pneumophila in association with blue-green algae (Cyanobacteria). Appl. envir. Microbiol. 39:456–459.

    CAS  Google Scholar 

  • Tsuchiya, Y., Matsumoto, A. & Okamoto, T., 1981. Identification of volatile metabolites producted by blue-green algae, Oscillatoria splendida, O. amoena, O. germinata, and Aphanizomenon sp. Yakagaku Zasshi 101:852–856.

    CAS  Google Scholar 

  • Twenhofel, W.H. & Broughton, W.A., 1939. The sediments of Crystal Lake, and oligotrophic lake in Villas County, Wisconsin. Amer. J. Sci. 237:231–252.

    CAS  Google Scholar 

  • Verhoff, F.H. & DePinto, J.V.,1977. Modeling and experimentation related to bacterial-mediated degradation of algae and its effect on nutrient regeneration in lakes. In Developments in Industrial Microbiology 18:213–229.

    Google Scholar 

  • Vidal, G., 1984. The oldest eucaryotic cells. Sci. Amer. 250:4857.

    Google Scholar 

  • Vollenweider, R.A., 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters with particular reference to nitrogen and phosphorus as factors in eutrophication. Organization Economic Cooperation and development Technical Report (DAS/SCl/68. 27.), Paris. 159 pp.

    Google Scholar 

  • Vollenweider, R.A. & Dillon, P.J., 1974. The application of the phosphorus loading concept to eutrophication research. National Research Council Canada (NRCC No. 13690), Ottawa, Ontario, 42 pp.

    Google Scholar 

  • Vollenweider, R.A. & Kerekes, J.J., 1980. Background and summary results of the OECD cooperative program on eutrophication. Restoration of lakes and inland waters. US Environmental Protection Agency (EPA-440/5–81–010), Washington, DC.

    Google Scholar 

  • Von Donsel, D.J. & Geldreich, E.E., 1971. Relationships of Salmonellae to fecal coliforms in bottom sediments. Wat. Res. 5:1079–1087.

    Google Scholar 

  • Walsby, A.E., 1969. The permeability of blue-green algal gas-vacuole membranes to gas. Proc. r. Soc. Lon., Ser. B., 173:235–255.

    Google Scholar 

  • Walker, W.W., 1979. Use of hypolimnetic oxygen depletion rate as atrophic state index for lakes. Wat. Res. Res. 15:1463–1470.

    CAS  Google Scholar 

  • Walker, W.W., 1982. Empirical methods for predicting eutrophication in impoundments, phase II model testing. US Army, Office of the Chief of Engineers, Washington, DC.

    Google Scholar 

  • Walker, W.W., 1983. Significance of eutrophication in water supply reservoirs. J. am. Wat. Wks. Ass. 75:38–42.

    CAS  Google Scholar 

  • Walter, M.R., Buick, R. & Dunlop, J.S.R.,1980. Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284:443–445.

    Google Scholar 

  • Wang, W., 1981. Kinetics of sediment oxygen demand. Wat. Res. 15:475–482.

    CAS  Google Scholar 

  • Ward, J.V. & Stanford, J.A., 1979. Symposium summary and conclusions. In Ward, J.V. & Stanford, J.A., (eds.), The Ecology of Regulated Streams. Plenum Press, New York: 377–385.

    Google Scholar 

  • Watanabe, A. & Yamamoto, Y., 1967. Heterotrophic nitrogen fixation by the blue-green alga Anabaenopsis circularis. Nature 214: 738.

    CAS  Google Scholar 

  • Wetzel, R.G., 1983. Limnology. Saunders College Publishing, Philadelphia: 591–614.

    Google Scholar 

  • Whitton, B.A., 1973. Interactions with other organisms. In Carr, N.G. & Whitton, B.A., (eds.), Biology of Blue-green Algae. Bot. Monogr. 9, University of California Press, Berkelly: 415–433.

    Google Scholar 

  • Wolf, H., 1972. The coliform count as a measure of water quality. In Mitchell, R., (ed.) Water Pollution Microbiology. Wiley-Interscience, New York: 333–345.

    Google Scholar 

  • Wyatt, J.T.,1970. Selected physiological and biochemical studies on blue-green algae. Ph.D. Dissertation, North Texas State University, Denton, Texas.

    Google Scholar 

  • Yano, Y. & Nakahara, S., 1976. Research on 2-methylisoborneol production by Phormidium tenue. Japan Kansai District Water Supply Association Conference Proceedings: 24–25.

    Google Scholar 

  • Zoeteman, B.C.J., Piet, G.J. & Morra, C.F.H.,1978. Sensorily perceptible organic pollutants in drinking water. In Hutzinger, H., et al. (eds.), Aquatic pollutants, transformation and biological effects. Pergammon Press, New York: 359–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Dr. W. Junk Publishers

About this chapter

Cite this chapter

Lanza, G.R., Silvey, J.K.G. (1985). Interactions of reservoir microbiota: eutrophication — related environmental problems. In: Gunnison, D. (eds) Microbial Processes in Reservoirs. Developments in Hydrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5514-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5514-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8933-3

  • Online ISBN: 978-94-009-5514-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics